RESUMO
Background: Previous research has shown that the Serum Amyloid A (SAA) protein family is intricately involved in inflammatory signaling and various disease pathologies. We have previously demonstrated that SAA is associated with increased colitis disease severity and the promotion of tumorigenesis. However, the specific role of SAA proteins in breast cancer pathology remains unclear. Therefore, we investigated the role of systemic SAA1 and SAA2 (SAA1/2) in a triple-negative breast cancer mouse model. Methods: Syngeneic breast tumors were established in wild-type mice, and mice lacking the SAA1/2 (SAADKO). Subsequently, tumor volume was monitored, species survival determined, the inflammatory profiles of mice assessed with a multiplex assay, and tumor molecular biology and histology characterized with Western blotting and H&E histological staining. Results: WT tumor-bearing mice had increased levels of plasma SAA compared to wild-type control mice, while SAADKO control and tumor-bearing mice presented with lower levels of SAA in their plasma. SAADKO tumor-bearing mice also displayed significantly lower concentrations of systemic inflammatory markers. Tumors from SAADKO mice overall had lower levels of SAA compared to tumors from wild-type mice, decreased apoptosis and inflammasome signaling, and little to no tumor necrosis. Conclusions: We demonstrated that systemic SAA1/2 stimulates the activation of the NLRP3 inflammasome in breast tumors, leading to the production of pro-inflammatory cytokines. This, in turn, promoted apoptosis and tumor necrosis but did not significantly impact tumor growth or histological grading.
RESUMO
BACKGROUND AND AIMS: Obesity increases the risk for abdominal aortic aneurysms (AAA) in humans and enhances angiotensin II (AngII)-induced AAA formation in C57BL/6 mice. We reported that deficiency of Serum Amyloid A (SAA) significantly reduces AngII-induced inflammation and AAA in both hyperlipidemic apoE-deficient and obese C57BL/6 mice. The aim of this study is to investigate whether SAA plays a role in the progression of early AAA in obese C57BL/6 mice. METHODS: Male C57BL/6J mice were fed a high-fat diet (60% kcal as fat) throughout the study. After 4 months of diet, the mice were infused with AngII until the end of the study. Mice with at least a 25% increase in the luminal diameter of the abdominal aorta after 4 weeks of AngII infusion were stratified into 2 groups. The first group received a control antisense oligonucleotide (Ctr ASO), and the second group received ASO that suppresses SAA (SAA-ASO) until the end of the study. RESULTS: Plasma SAA levels were significantly reduced by the SAA ASO treatment. While mice that received the control ASO had continued aortic dilation throughout the AngII infusion periods, the mice that received SAA-ASO had a significant reduction in the progression of aortic dilation, which was associated with significant reductions in matrix metalloprotease activities, decreased macrophage infiltration and decreased elastin breaks in the abdominal aortas. CONCLUSIONS: We demonstrate for the first time that suppression of SAA protects obese C57BL/6 mice from the progression of AngII-induced AAA. Suppression of SAA may be a therapeutic approach to limit AAA progression.
Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Humanos , Masculino , Animais , Camundongos , Angiotensina II/farmacologia , Proteína Amiloide A Sérica/genética , Oligonucleotídeos Antissenso/uso terapêutico , Camundongos Endogâmicos C57BL , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Aorta Abdominal , Obesidade , Modelos Animais de Doenças , Camundongos Knockout , Apolipoproteínas ERESUMO
Serum amyloid A (SAA) is a family of proteins, the plasma levels of which may increase >1000-fold in acute inflammatory states. We investigated the role of SAA in sepsis using mice deficient in all three acute-phase SAA isoforms (SAA-TKO). SAA deficiency significantly increased mortality rates in the three experimental sepsis mouse models: cecal ligation and puncture (CLP), cecal slurry (CS) injection, and lipopolysaccharide (LPS) treatments. SAA-TKO mice had exacerbated lung pathology compared to wild-type (WT) mice after CLP. A bulk RNA sequencing performed on lung tissues excised 24 h after CLP indicated significant enrichment in the expression of genes associated with chemokine production, chemokine and cytokine-mediated signaling, neutrophil chemotaxis, and neutrophil migration in SAA-TKO compared to WT mice. Consistently, myeloperoxidase activity and neutrophil counts were significantly increased in the lungs of septic SAA-TKO mice compared to WT mice. The in vitro treatment of HL-60, neutrophil-like cells, with SAA or SAA bound to a high-density lipoprotein (SAA-HDL), significantly decreased cellular transmigration through laminin-coated membranes compared to untreated cells. Thus, SAA potentially prevents neutrophil transmigration into injured lungs, thus reducing exacerbated tissue injury and mortality. In conclusion, we demonstrate for the first time that endogenous SAA plays a protective role in sepsis, including ameliorating lung injury.
Assuntos
Lesão Pulmonar , Sepse , Animais , Camundongos , Lesão Pulmonar/patologia , Proteína Amiloide A Sérica/genética , Sepse/patologia , Pulmão/patologia , Quimiocinas , Camundongos Endogâmicos C57BL , Modelos Animais de DoençasRESUMO
OBJECTIVE: Obesity increases the risk for abdominal aortic aneurysms (AAA) in humans and enhances angiotensin II (AngII)-induced AAA formation in C57BL/6 mice. Obesity is also associated with increases in serum amyloid A (SAA). We previously reported that deficiency of SAA significantly reduces AngII-induced inflammation and AAA in both hyperlipidemic apoE-deficient and obese C57BL/6 mice. In this study, we investigated whether SAA plays a role in the progression of early AAA in obese C57BL/6 mice. APPROACH AND RESULTS: Male C57BL/6J mice were fed a high-fat diet (60% kcal as fat) throughout the study. After 4 months of diet, the mice were infused with angiotensin II (AngII) until the end of the study. Mice with at least a 25% increase in the luminal diameter of the abdominal aorta after 4 weeks of AngII infusion were stratified into 2 groups. The first group received a control antisense oligonucleotide (Ctr ASO), and the second group received ASO that suppresses SAA (SAA-ASO) until the end of the study. Plasma SAA levels were significantly reduced by the SAA ASO treatment. While mice that received the control ASO had continued aortic dilation throughout the AngII infusion periods, the mice that received SAA-ASO had a significant reduction in the progression of aortic dilation, which was associated with significant reductions in matrix metalloprotease activities, decreased macrophage infiltration and decreased elastin breaks in the abdominal aortas. CONCLUSION: We demonstrate for the first time that suppression of SAA protects obese C57BL/6 mice from the progression of AngII-induced AAA. Suppression of SAA may be a therapeutic approach to limit AAA progression.
RESUMO
Serum amyloid A (SAA) is predictive of CVD in humans and causes atherosclerosis in mice. SAA has many proatherogenic effects in vitro. However, HDL, the major carrier of SAA in the circulation, masks these effects. The remodeling of HDL by cholesteryl ester transfer protein (CETP) liberates SAA restoring its proinflammatory activity. Here, we investigated whether deficiency of SAA suppresses the previously described proatherogenic effect of CETP. ApoE-/- mice and apoE-/- mice deficient in the three acute-phase isoforms of SAA (SAA1.1, SAA2.1, and SAA3; "apoE-/- SAA-TKO") with and without adeno-associated virus-mediated expression of CETP were studied. There was no effect of CETP expression or SAA genotype on plasma lipids or inflammatory markers. Atherosclerotic lesion area in the aortic arch of apoE-/- mice was 5.9 ± 1.2%; CETP expression significantly increased atherosclerosis in apoE-/- mice (13.1 ± 2.2%). However, atherosclerotic lesion area in the aortic arch of apoE-/- SAA-TKO mice (5.1 ± 1.1%) was not significantly increased by CETP expression (6.2 ± 0.9%). The increased atherosclerosis in apoE-/- mice expressing CETP was associated with markedly increased SAA immunostaining in aortic root sections. Thus, SAA augments the atherogenic effects of CETP, which suggests that inhibiting CETP may be of particular benefit in patients with high SAA.
Assuntos
Aterosclerose , Proteínas de Transferência de Ésteres de Colesterol , Humanos , Camundongos , Animais , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteína Amiloide A Sérica/metabolismo , Aterosclerose/metabolismo , Apolipoproteínas E/metabolismo , Aorta/metabolismoRESUMO
Several studies in the past have reported positive correlations between circulating Serum amyloid A (SAA) levels and obesity. However, based on limited number of studies involving appropriate mouse models, the role of SAA in the development of obesity and obesity-related metabolic consequences has not been established. Accordingly, herein, we have examined the role of SAA in the development of obesity and its associated metabolic complications in vivo using mice deficient for all three inducible forms of SAA: SAA1.1, SAA2.1 and SAA3 (TKO). Male and female mice were rendered obese by feeding a high fat, high sucrose diet with added cholesterol (HFHSC) and control mice were fed rodent chow diet. Here, we show that the deletion of SAA does not affect diet-induced obesity, hepatic lipid metabolism or adipose tissue inflammation. However, there was a modest effect on glucose metabolism. The results of this study confirm previous findings that SAA levels are elevated in adipose tissues as well as in the circulation in diet-induced obese mice. However, the three acute phase SAAs do not play a causative role in the development of obesity or obesity-associated adipose tissue inflammation and dyslipidemia.
Assuntos
Proteína Amiloide A Sérica , Sacarose , Animais , Colesterol , Dieta Hiperlipídica/efeitos adversos , Feminino , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Proteína Amiloide A Sérica/metabolismoRESUMO
BACKGROUND: Obesity increases the risk for human abdominal aortic aneurysms (AAAs) and enhances Ang II (angiotensin II)-induced AAA formation in C57BL/6J mice. Obesity is also associated with increases in perivascular fat that expresses proinflammatory markers including SAA (serum amyloid A). We previously reported that deficiency of SAA significantly reduces Ang II-induced inflammation and AAA in hyperlipidemic apoE-deficient mice. In this study. we investigated whether adipose tissue-derived SAA plays a role in Ang II-induced AAA in obese C57BL/6J mice. METHODS: The development of AAA was compared between male C57BL/6J mice (wild type), C57BL/6J mice lacking SAA1.1, SAA2.1, and SAA3 (TKO); and TKO mice harboring a doxycycline-inducible, adipocyte-specific SAA1.1 transgene (TKO-Tgfat; SAA expressed only in fat). All mice were fed an obesogenic diet and doxycycline to induce SAA transgene expression and infused with Ang II to induce AAA. RESULTS: In response to Ang II infusion, SAA expression was significantly increased in perivascular fat of obese C57BL/6J mice. Maximal luminal diameters of the abdominal aorta were determined by ultrasound before and after Ang II infusion, which indicated a significant increase in aortic luminal diameters in wild type and TKO-TGfat mice but not in TKO mice. Adipocyte-specific SAA expression was associated with MMP (matrix metalloproteinase) activity and macrophage infiltration in abdominal aortas of Ang II-infused obese mice. CONCLUSIONS: We demonstrate for the first time that SAA deficiency protects obese C57BL/6J mice from Ang II-induced AAA. SAA expression only in adipocytes is sufficient to cause AAA in obese mice infused with Ang II.
Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Adipócitos/metabolismo , Angiotensina II/farmacologia , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Apolipoproteínas E/genética , Modelos Animais de Doenças , Doxiciclina/efeitos adversos , Masculino , Metaloproteinases da Matriz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/complicações , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismoRESUMO
BACKGROUND & AIMS: Identifying new approaches to lessen inflammation, as well as the associated malignant consequences, remains crucial to improving the lives and prognosis of patients diagnosed with inflammatory bowel diseases. Although it previously has been suggested as a suitable biomarker for monitoring disease activity in patients diagnosed with Crohn's disease, the role of the acute-phase protein serum amyloid A (SAA) in inflammatory bowel disease remains unclear. In this study, we aimed to assess the role of SAA in colitis-associated cancer. METHODS: We established a model of colitis-associated cancer in wild-type and SAA double-knockout (Saa1/2-/-) mice by following the azoxymethane/dextran sulfate sodium protocol. Disease activity was monitored throughout the study while colon and tumor tissues were harvested for subsequent use in cytokine analyses, Western blot, and immunohistochemistry +experiments. RESULTS: We observed attenuated disease activity in mice deficient for Saa1/2 as evidenced by decreased weight loss, increased stool consistency, decreased rectal bleeding, and decreased colitis-associated tissue damage. Macrophage infiltration, including CD206+ M2-like macrophages, also was attenuated in SAA knockout mice, while levels of interleukin 4, interleukin 10, and tumor necrosis factor-É were decreased in the distal colon. Mice deficient for SAA also showed a decreased tumor burden, and tumors were found to have increased apoptotic activity coupled with decreased expression for markers of proliferation. CONCLUSION: Based on these findings, we conclude that SAA has an active role in inflammatory bowel disease and that it could serve as a therapeutic target aimed at decreasing chronic inflammation and the associated risk of developing colitis-associated cancer.
Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias Associadas a Colite/etiologia , Neoplasias Associadas a Colite/metabolismo , Suscetibilidade a Doenças , Proteína Amiloide A Sérica/metabolismo , Animais , Biomarcadores , Transformação Celular Neoplásica/genética , Neoplasias Associadas a Colite/patologia , Modelos Animais de Doenças , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Isoformas de Proteínas , Proteína Amiloide A Sérica/genéticaRESUMO
Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles. We also examined hepatocyte-mediated clearance of lipid-free and HDL-associated SAA. We prepared hepatocytes from mice injected with lipopolysaccharide or an SAA-expressing adenoviral vector. Alternatively, we incubated primary hepatocytes from SAA-deficient mice with purified SAA. We analyzed conditioned media to determine the lipidation status of endogenously produced and exogenously added SAA. Examining the migration of lipidated species, we found that SAA is lipidated and forms nascent particles that are distinct from apoA-I-containing particles and that apoA-I lipidation is unaltered when SAA is overexpressed or added to the cells, indicating that SAA is not incorporated into apoA-I-containing HDL during HDL biogenesis. Like apoA-I formation, generation of SAA-containing particles was dependent on ABCA1, but not on scavenger receptor class B type I. Hepatocytes degraded significantly more SAA than apoA-I. Taken together, our results indicate that SAA's lipidation and metabolism by the liver is independent of apoA-I and that SAA is not incorporated into HDL during HDL biogenesis.
Assuntos
Lipoproteínas HDL/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/metabolismo , Hepatócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genéticaRESUMO
The liver is the most common site of metastatic disease1. Although this metastatic tropism may reflect the mechanical trapping of circulating tumour cells, liver metastasis is also dependent, at least in part, on the formation of a 'pro-metastatic' niche that supports the spread of tumour cells to the liver2,3. The mechanisms that direct the formation of this niche are poorly understood. Here we show that hepatocytes coordinate myeloid cell accumulation and fibrosis within the liver and, in doing so, increase the susceptibility of the liver to metastatic seeding and outgrowth. During early pancreatic tumorigenesis in mice, hepatocytes show activation of signal transducer and activator of transcription 3 (STAT3) signalling and increased production of serum amyloid A1 and A2 (referred to collectively as SAA). Overexpression of SAA by hepatocytes also occurs in patients with pancreatic and colorectal cancers that have metastasized to the liver, and many patients with locally advanced and metastatic disease show increases in circulating SAA. Activation of STAT3 in hepatocytes and the subsequent production of SAA depend on the release of interleukin 6 (IL-6) into the circulation by non-malignant cells. Genetic ablation or blockade of components of IL-6-STAT3-SAA signalling prevents the establishment of a pro-metastatic niche and inhibits liver metastasis. Our data identify an intercellular network underpinned by hepatocytes that forms the basis of a pro-metastatic niche in the liver, and identify new therapeutic targets.
Assuntos
Hepatócitos/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Fígado/patologia , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Animais , Carcinoma Ductal Pancreático/patologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/secundário , Feminino , Interleucina-6/metabolismo , Masculino , Camundongos , Fator de Transcrição STAT3/metabolismo , Proteína Amiloide A Sérica/metabolismoRESUMO
Objective- SAA (serum amyloid A) is a family of acute-phase reactants that have proinflammatory and proatherogenic activities. SAA is more lipophilic than apoA-I (apolipoprotein A-I), and during an acute-phase response, <10% of plasma SAA is found lipid-free. In most reports, SAA is found exclusively associated with high-density lipoprotein; however, we and others have reported SAA on apoB (apolipoprotein B)-containing lipoproteins in both mice and humans. The goal of this study was to determine whether SAA is an exchangeable apolipoprotein. Approach and Results- Delipidated human SAA was incubated with SAA-free human lipoproteins; then, samples were reisolated by fast protein liquid chromatography, and SAA analyzed by ELISA and immunoblot. Both in vitro and in vivo, we show that SAA associates with any lipoprotein and does not remain in a lipid-free form. Although SAA is preferentially found on high-density lipoprotein, it can exchange between lipoproteins. In the presence of CETP (cholesterol ester transfer protein), there is greater exchange of SAA between lipoproteins. Subjects with diabetes mellitus, but not those with metabolic syndrome, showed altered SAA lipoprotein distribution postprandially. Proteoglycan-mediated lipoprotein retention is thought to be an underlying mechanism for atherosclerosis development. SAA has a proteoglycan-binding domain. Lipoproteins containing SAA had increased proteoglycan binding compared with SAA-free lipoproteins. Conclusions- Thus, SAA is an exchangeable apolipoprotein and increases apoB-containing lipoproteins' proteoglycan binding. We and others have previously reported the presence of SAA on low-density lipoprotein in individuals with obesity, diabetes mellitus, and metabolic syndrome. We propose that the presence of SAA on apoB-containing lipoproteins may contribute to cardiovascular disease development in these populations.
Assuntos
Apolipoproteínas/metabolismo , Proteína Amiloide A Sérica/metabolismo , Idoso , Animais , Apolipoproteína B-100/metabolismo , Apolipoproteínas/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Diabetes Mellitus/sangue , Feminino , Humanos , Lipoproteínas HDL/metabolismo , Masculino , Síndrome Metabólica/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Obesidade/sangue , Período Pós-Prandial , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteoglicanas/metabolismo , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genéticaRESUMO
BACKGROUND AND AIMS: Serum amyloid A (SAA) predicts cardiovascular events. Overexpression of SAA increases atherosclerosis development; however, deficiency of two of the murine acute phase isoforms, SAA1.1 and SAA2.1, has no effect on atherosclerosis. SAA3 is a pseudogene in humans, but is an expressed acute phase isoform in mice. The goal of this study was to determine if SAA3 affects atherosclerosis in mice. METHODS: ApoE-/- mice were used as the model for all studies. SAA3 was overexpressed by an adeno-associated virus or suppressed using an anti-sense oligonucleotide approach. RESULTS: Over-expression of SAA3 led to a 4-fold increase in atherosclerosis lesion area compared to control mice (p = 0.01). Suppression of SAA3 decreased atherosclerosis in mice genetically deficient in SAA1.1 and SAA2.1 (p < 0.0001). CONCLUSIONS: SAA3 augments atherosclerosis in mice. Our results resolve a previous paradox in the literature and support extensive epidemiological data that SAA is pro-atherogenic.
Assuntos
Aorta/metabolismo , Doenças da Aorta/sangue , Aterosclerose/sangue , Placa Aterosclerótica , Proteína Amiloide A Sérica/metabolismo , Animais , Aorta/patologia , Doenças da Aorta/diagnóstico , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genéticaRESUMO
Serum amyloid A (SAA) is a family of acute-phase reactants. Plasma levels of human SAA1/SAA2 (mouse SAA1.1/2.1) can increase ≥1,000-fold during an acute-phase response. Mice, but not humans, express a third relatively understudied SAA isoform, SAA3. We investigated whether mouse SAA3 is an HDL-associated acute-phase SAA. Quantitative RT-PCR with isoform-specific primers indicated that SAA3 and SAA1.1/2.1 are induced similarly in livers (â¼2,500-fold vs. â¼6,000-fold, respectively) and fat (â¼400-fold vs. â¼100-fold, respectively) of lipopolysaccharide (LPS)-injected mice. In situ hybridization demonstrated that all three SAAs are produced by hepatocytes. All three SAA isoforms were detected in plasma of LPS-injected mice, although SAA3 levels were â¼20% of SAA1.1/2.1 levels. Fast protein LC analyses indicated that virtually all of SAA1.1/2.1 eluted with HDL, whereas â¼15% of SAA3 was lipid poor/free. After density gradient ultracentrifugation, isoelectric focusing demonstrated that â¼100% of plasma SAA1.1 was recovered in HDL compared with only â¼50% of SAA2.1 and â¼10% of SAA3. Thus, SAA3 appears to be more loosely associated with HDL, resulting in lipid-poor/free SAA3. We conclude that SAA3 is a major hepatic acute-phase SAA in mice that may produce systemic effects during inflammation.
Assuntos
Reação de Fase Aguda/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Células Cultivadas , Lipopolissacarídeos/farmacologia , Lipoproteínas HDL/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genéticaRESUMO
The acute phase (AP) reactant serum amyloid A (SAA), an HDL apolipoprotein, exhibits pro-inflammatory activities, but its physiological function(s) are poorly understood. Functional differences between SAA1.1 and SAA2.1, the two major SAA isoforms, are unclear. Mice deficient in either isoform were used to investigate plasma isoform effects on HDL structure, composition, and apolipoprotein catabolism. Lack of either isoform did not affect the size of HDL, normally enlarged in the AP, and did not significantly change HDL composition. Plasma clearance rates of HDL apolipoproteins were determined using native HDL particles. The fractional clearance rates (FCRs) of apoA-I, apoA-II, and SAA were distinct, indicating that HDL is not cleared as intact particles. The FCRs of SAA1.1 and SAA2.1 in AP mice were similar, suggesting that the selective deposition of SAA1.1 in amyloid plaques is not associated with a difference in the rates of plasma clearance of the isoforms. Although the clearance rate of SAA was reduced in the absence of the HDL receptor, scavenger receptor class B type I (SR-BI), it remained significantly faster compared with that of apoA-I and apoA-II, indicating a relatively minor role of SR-BI in SAA's rapid clearance. These studies enhance our understanding of SAA metabolism and SAA's effects on AP-HDL composition and catabolism.
Assuntos
HDL-Colesterol/metabolismo , Lipoproteínas HDL/sangue , Isoformas de Proteínas/genética , Proteína Amiloide A Sérica/genética , Reação de Fase Aguda/metabolismo , Animais , Apolipoproteína A-I/sangue , Apolipoproteína A-I/química , Apolipoproteína A-II/sangue , Apolipoproteína A-II/química , Apolipoproteína A-II/metabolismo , Humanos , Lipoproteínas HDL/química , Camundongos , Isoformas de Proteínas/química , Receptores Depuradores Classe B/sangue , Receptores Depuradores Classe B/química , Proteína Amiloide A Sérica/química , Proteína Amiloide A Sérica/metabolismoRESUMO
HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking Saa1.1 and Saa2.1 exhibited a partial restoration of antiinflammatory and cholesterol efflux properties in adipocytes. Conversely, incorporation of SAA into HDL preparations reduced antiinflammatory properties but not to the same extent as HDL from AgNO3-injected mice. SAA-enriched HDL colocalized with cell surface-associated extracellular matrix (ECM) of adipocytes, suggesting impaired access to the plasma membrane. Enzymatic digestion of proteoglycans in the ECM restored the ability of SAA-containing HDL to inhibit palmitate-induced inflammation and cholesterol efflux. Collectively, these findings indicate that inflammation results in a loss of the antiinflammatory properties of HDL on adipocytes, which appears to partially result from the SAA component of HDL binding to cell-surface proteoglycans, thereby preventing access of HDL to the plasma membrane.
Assuntos
Lipoproteínas HDL/fisiologia , Proteína Amiloide A Sérica/fisiologia , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Proteína C-Reativa/análise , Colesterol/metabolismo , Humanos , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Nitrato de Prata/farmacologia , Receptor 4 Toll-Like/fisiologiaRESUMO
OBJECTIVE: Rupture of abdominal aortic aneurysm (AAA), a major cause of death in the aged population, is characterized by vascular inflammation and matrix degradation. Serum amyloid A (SAA), an acute-phase reactant linked to inflammation and matrix metalloproteinase induction, correlates with aortic dimensions before aneurysm formation in humans. We investigated whether SAA deficiency in mice affects AAA formation during angiotensin II (Ang II) infusion. APPROACH AND RESULTS: Plasma SAA increased ≈60-fold in apoE(-/-) mice 24 hours after intraperitoneal Ang II injection (100 µg/kg; n=4) and ≈15-fold after chronic 28-day Ang II infusion (1000 ng/kg per minute; n=9). AAA incidence and severity after 28-day Ang II infusion was significantly reduced in apoE(-/-) mice lacking both acute-phase SAA isoforms (SAAKO; n=20) compared with apoE(-/-) mice (SAAWT; n=20) as assessed by in vivo ultrasound and ex vivo morphometric analyses, despite a significant increase in systolic blood pressure in SAAKO mice compared with SAAWT mice after Ang II infusion. Atherosclerotic lesion area of the aortic arch was similar in SAAKO and SAAWT mice after 28-day Ang II infusion. Immunostaining detected SAA in AAA tissues of Ang II-infused SAAWT mice that colocalized with macrophages, elastin breaks, and enhanced matrix metalloproteinase activity. Matrix metalloproteinase-2 activity was significantly lower in aortas of SAAKO mice compared with SAAWT mice after 10-day Ang II infusion. CONCLUSIONS: Lack of endogenous acute-phase SAA protects against experimental AAA through a mechanism that may involve reduced matrix metalloproteinase-2 activity.
Assuntos
Angiotensina II/farmacologia , Aneurisma da Aorta Abdominal/prevenção & controle , Apolipoproteínas E/deficiência , Metaloproteinase 2 da Matriz/metabolismo , Proteína Amiloide A Sérica/deficiência , Animais , Aneurisma da Aorta Abdominal/patologia , Biomarcadores/sangue , Modelos Animais de Doenças , Elastina/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Sensibilidade e Especificidade , Proteína Amiloide A Sérica/metabolismoRESUMO
OBJECTIVE: Although elevated plasma concentrations of serum amyloid A (SAA) are associated strongly with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice. APPROACH AND RESULTS: Apolipoprotein E-deficient (apoE(-/-)) mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.1 and SAA2.1, were fed a normal rodent diet for 50 weeks. Female mice, but not male apoE-/- mice deficient in SAA1.1 and SAA2.1, had a modest increase (22%; P≤0.05) in plasma cholesterol concentrations and a 53% increase in adipose mass compared with apoE-/- mice expressing SAA1.1 and SAA2.1 that did not affect the plasma cytokine levels or the expression of adipose tissue inflammatory markers. SAA deficiency did not affect lipoprotein cholesterol distributions or plasma triglyceride concentrations in either male or female mice. Atherosclerotic lesion areas measured on the intimal surfaces of the arch, thoracic, and abdominal regions were not significantly different between apoE-/- mice deficient in SAA1.1 and SAA2.1 and apoE-/- mice expressing SAA1.1 and SAA2.1 in either sex. To accelerate lesion formation, mice were fed a Western diet for 12 weeks. SAA deficiency had effect neither on diet-induced alterations in plasma cholesterol, triglyceride, or cytokine concentrations nor on aortic atherosclerotic lesion areas in either male or female mice. In addition, SAA deficiency in male mice had no effect on lesion areas or macrophage accumulation in the aortic roots. CONCLUSIONS: The absence of endogenous SAA1.1 and 2.1 does not affect atherosclerotic lipid deposition in apolipoprotein E-deficient mice fed either normal or Western diets.
Assuntos
Doenças da Aorta/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Proteína Amiloide A Sérica/deficiência , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Adiposidade , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Colesterol/sangue , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Mediadores da Inflamação/sangue , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Amiloide A Sérica/genética , Fatores de Tempo , Triglicerídeos/sangueRESUMO
Studies suggest that inflammation impairs reverse cholesterol transport (RCT). We investigated whether serum amyloid A (SAA) contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT) mice and mice deficient in SAA1.1 and SAA2.1 (SAAKO) were injected intraperitoneally with (3)H-cholesterol-labeled J774 macrophages 4 hr after administration of LPS or buffered saline. (3)H-cholesterol in plasma 4 hr after macrophage injection was significantly reduced in both WT and SAAKO mice injected with LPS, but this was not associated with a reduced capacity of serum from LPS-injected mice to promote macrophage cholesterol efflux in vitro. Hepatic accumulation of (3)H-cholesterol was unaltered in either WT or SAAKO mice by LPS treatment. Radioactivity present in bile and feces of LPS-injected WT mice 24 hr after macrophage injection was reduced by 36% (P < 0.05) and 80% (P < 0.001), respectively. In contrast, in SAAKO mice, LPS did not significantly reduce macrophage-derived (3)H-cholesterol in bile, and fecal excretion was reduced by only 45% (P < 0.05). Injection of cholesterol-loaded allogeneic J774 cells, but not syngeneic bone-marrow-derived macrophages, transiently induced SAA in C57BL/6 mice. Our study confirms reports that acute inflammation impairs steps in the RCT pathway and establishes that SAA plays only a minor role in this impairment.
RESUMO
SAA has been shown to have potential proinflammatory properties in inflammatory diseases such as atherosclerosis. These include induction of tumor necrosis factor α, interleukin-6, and monocyte chemoattractant protein 1 in vitro. However, concern has been raised that these effects might be due to use of recombinant SAA with low level of endotoxin contaminants or its non-native forms. Therefore, physiological relevance has not been fully elucidated. In this study, we investigated the role of SAA in the production of inflammatory cytokines. Stimulation of mouse monocyte J774 cells with lipid-poor recombinant human SAA and purified SAA derived from cardiac surgery patients, but not ApoA-I and ApoA-II, elicited pro-inflammatory cytokines like granulocyte colony stimulating factor (G-CSF). However, HDL-associated SAA failed to stimulate production of these cytokines. Using neutralizing antibodies against toll like receptor (TLR) 2 and 4, we could evaluate that TLR 2 is responsible for G-CSF production by lipid-poor SAA. To confirm these data in vivo, we expressed mouse SAA in SAA deficient C57BL/6 mice using an adenoviral vector. G-CSF was identically expressed in SAA-Adenoviral infected mice as well as in control null-Adenoviral mice at the early time points (4-8h) and could not be detected in plasma 24h after infection when plasma SAA levels were maximally elevated, indicating that adenoviral vector rather than SAA affected G-CSF levels. Taken together, our findings suggest that lipid-poor SAA, but not HDL-associated SAA, stimulates G-CSF production and this stimulation is mediated through TLR 2 in J774 cells. However, its physiological role in vivo remains ambiguous.