Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 294(3): 319-337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38683038

RESUMO

Developing devices and instrumentation in a bioimaging core facility is an important part of the innovation mandate inherent in the core facility model but is a complex area due to the required skills and investments, and the impossibility of a universally applicable model. Here, we seek to define technological innovation in microscopy and situate it within the wider core facility innovation portfolio, highlighting how strategic development can accelerate access to innovative imaging modalities and increase service range, and thus maintain the cutting edge needed for sustainability. We consider technology development from the perspective of core facility staff and their stakeholders as well as their research environment and aim to present a practical guide to the 'Why, When, and How' of developing and integrating innovative technology in the core facility portfolio. Core facilities need to innovate to stay up to date. However, how to carry out the innovation is not very obvious. One area of innovation in imaging core facilities is the building of optical setups. However, the creation of optical setups requires specific skill sets, time, and investments. Consequently, the topic of whether a core facility should develop optical devices is discussed as controversial. Here, we provide resources that should help get into this topic, and we discuss different options when and how it makes sense to build optical devices in core facilities. We discuss various aspects, including consequences for staff and the relation of the core to the institute, and also broaden the scope toward other areas of innovation.


Assuntos
Invenções , Microscopia/métodos , Microscopia/instrumentação
2.
Nucleic Acids Res ; 46(D1): D586-D594, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29045755

RESUMO

Triterpenes constitute a large and important class of plant natural products with diverse structures and functions. Their biological roles range from membrane structural components over plant hormones to specialized plant defence compounds. Furthermore, triterpenes have great potential for a variety of commercial applications such as vaccine adjuvants, anti-cancer drugs, food supplements and agronomic agents. Their biosynthesis is carried out through complicated, branched pathways by multiple enzyme types that include oxidosqualene cyclases, cytochrome P450s, and UDP-glycosyltransferases. Given that the number of characterized triterpene biosynthesis enzymes has been growing fast recently, the need for a database specifically focusing on triterpene enzymology became eminent. Here, we present the TriForC database (http://bioinformatics.psb.ugent.be/triforc/), encompassing a comprehensive catalogue of triterpene biosynthesis enzymes. This highly interlinked database serves as a user-friendly access point to versatile data sets of enzyme and compound features, enabling the scanning of a complete catalogue of experimentally validated triterpene enzymes, their substrates and products, as well as the pathways they constitute in various plant species. The database can be accessed by direct browsing or through convenient search tools including keyword, BLAST, plant species and substructure options. This database will facilitate gene mining and creating genetic toolboxes for triterpene synthetic biology.


Assuntos
Bases de Dados Factuais , Plantas/metabolismo , Triterpenos/metabolismo , Produtos Biológicos/metabolismo , Vias Biossintéticas , Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Enzimas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Ferramenta de Busca , Especificidade por Substrato , Biologia de Sistemas , Triterpenos/química
3.
Nucleic Acids Res ; 42(Database issue): D859-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24185699

RESUMO

We describe the development of GWIPS-viz (http://gwips.ucc.ie), an online genome browser for viewing ribosome profiling data. Ribosome profiling (ribo-seq) is a recently developed technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome-protected messenger RNA (mRNA) fragments, which allows the ribosome density along all mRNA transcripts present in the cell to be quantified. Since its inception, ribo-seq has been carried out in a number of eukaryotic and prokaryotic organisms. Owing to the increasing interest in ribo-seq, there is a pertinent demand for a dedicated ribo-seq genome browser. GWIPS-viz is based on The University of California Santa Cruz (UCSC) Genome Browser. Ribo-seq tracks, coupled with mRNA-seq tracks, are currently available for several genomes: human, mouse, zebrafish, nematode, yeast, bacteria (Escherichia coli K12, Bacillus subtilis), human cytomegalovirus and bacteriophage lambda. Our objective is to continue incorporating published ribo-seq data sets so that the wider community can readily view ribosome profiling information from multiple studies without the need to carry out computational processing.


Assuntos
Bases de Dados Genéticas , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Biossíntese de Proteínas , Análise de Sequência de RNA , Navegador , Animais , Humanos , Internet , Camundongos , RNA Mensageiro/química , Ribossomos/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA