Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38244714

RESUMO

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized mainly by deficits in social communication and stereotyped and restricted behavior and interests with a male to female bias of 4.2/1. Social behavior in ASD animal models is commonly analyzed in males, and seldomly in females, using the widely implemented three-chambers test procedure. Here, we implemented a novel procedure, the Live Mouse Tracker (LMT), combining artificial intelligence, machine learning procedures and behavioral measures. We used it on mice that were prenatally exposed to valproic acid (VPA) (450 mg/kg) at embryonic day 12.5, a widely recognized and potent ASD model that we had previously extensively characterized. We focused on female mice offspring, in which social deficits have been rarely documented when using the 3-CT procedure. We recorded several parameters related to social behavior in these mice, continuously for three days in groups of four female mice. Comparisons were made on groups of 4 female mice with the same treatment (4 saline or 4 VPA) or with different treatments (3 saline and 1 VPA). We report that VPA females show several types of social deficits, which are different in nature and magnitude in relation with time. When VPA mice were placed in the LMT alongside saline mice, their social deficits showed significant improvement as early as 1 h from the start of the experiment, lasting up to 3 days throughout the duration of the experiment. Our findings suggest that ASD may be underdiagnosed in females. They also imply that ASD-related social deficits can be ameliorated by the presence of typical individuals.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Feminino , Masculino , Animais , Camundongos , Humanos , Ácido Valproico/toxicidade , Inteligência Artificial , Transtorno do Espectro Autista/induzido quimicamente , Comportamento Social , Estereotipagem , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Modelos Animais de Doenças , Comportamento Animal
2.
Front Mol Neurosci ; 16: 1139118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008785

RESUMO

Autism is characterized by atypical social communication and stereotyped behaviors. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are detected in 1-2% of patients with autism and intellectual disability, but the mechanisms underpinning the symptoms remain largely unknown. Here, we characterized the behavior of Shank3 Δ11/Δ11 mice from 3 to 12 months of age. We observed decreased locomotor activity, increased stereotyped self-grooming and modification of socio-sexual interaction compared to wild-type littermates. We then used RNAseq on four brain regions of the same animals to identify differentially expressed genes (DEGs). DEGs were identified mainly in the striatum and were associated with synaptic transmission (e.g., Grm2, Dlgap1), G-protein-signaling pathways (e.g., Gnal, Prkcg1, and Camk2g), as well as excitation/inhibition balance (e.g., Gad2). Downregulated and upregulated genes were enriched in the gene clusters of medium-sized spiny neurons expressing the dopamine 1 (D1-MSN) and the dopamine 2 receptor (D2-MSN), respectively. Several DEGs (Cnr1, Gnal, Gad2, and Drd4) were reported as striosome markers. By studying the distribution of the glutamate decarboxylase GAD65, encoded by Gad2, we showed that the striosome compartment of Shank3 Δ11/Δ11 mice was enlarged and displayed much higher expression of GAD65 compared to wild-type mice. Altogether, these results indicate altered gene expression in the striatum of Shank3-deficient mice and strongly suggest, for the first time, that the excessive self-grooming of these mice is related to an imbalance in the striatal striosome and matrix compartments.

3.
Neuropsychopharmacology ; 48(6): 963-974, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36932179

RESUMO

A link between gut dysbiosis and the pathogenesis of brain disorders has been identified. A role for gut bacteria in drug reward and addiction has been suggested but very few studies have investigated their impact on brain and behavioral responses to addictive drugs so far. In particular, their influence on nicotine's addiction-like processes remains unknown. In addition, evidence shows that glial cells shape the neuronal activity of the mesolimbic system but their regulation, within this system, by the gut microbiome is not established. We demonstrate that a lack of gut microbiota in male mice potentiates the nicotine-induced activation of sub-regions of the mesolimbic system. We further show that gut microbiota depletion enhances the response to nicotine of dopaminergic neurons of the posterior ventral tegmental area (pVTA), and alters nicotine's rewarding and aversive effects in an intra-VTA self-administration procedure. These effects were not associated with gross behavioral alterations and the nicotine withdrawal syndrome was not impacted. We further show that depletion of the gut microbiome modulates the glial cells of the mesolimbic system. Notably, it increases the number of astrocytes selectively in the pVTA, and the expression of postsynaptic density protein 95 in both VTA sub-regions, without altering the density of the astrocytic glutamatergic transporter GLT1. Finally, we identify several sub-populations of microglia in the VTA that differ between its anterior and posterior sub-parts, and show that they are re-organized in conditions of gut microbiota depletion. The present study paves the way for refining our understanding of the pathophysiology of nicotine addiction.


Assuntos
Microbioma Gastrointestinal , Síndrome de Abstinência a Substâncias , Camundongos , Masculino , Animais , Nicotina/farmacologia , Área Tegmentar Ventral , Dopamina/metabolismo , Recompensa , Síndrome de Abstinência a Substâncias/metabolismo , Neuroglia/metabolismo
4.
Front Behav Neurosci ; 17: 1294558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173978

RESUMO

Background: Autism spectrum disorders affect more than 1% of the population, impairing social communication and increasing stereotyped behaviours. A micro-deletion of the 16p11.2 BP4-BP5 chromosomic region has been identified in 1% of patients also displaying intellectual disabilities. In mouse models generated to understand the mechanisms of this deletion, learning and memory deficits were pervasive in most genetic backgrounds, while social communication deficits were only detected in some models. Methods: To complement previous studies, we itemized the social deficits in the mouse model of 16p11.2 deletion on a hybrid C57BL/6N × C3H.Pde6b+ genetic background. We examined whether behavioural deficits were visible over long-term observation periods lasting several days and nights, to parallel everyday-life assessment of patients. We recorded the individual and social behaviours of mice carrying a heterozygous deletion of the homologous 16p11.2 chromosomic region (hereafter Del/+) and their wild-type littermates from both sexes over two or three consecutive nights during social interactions of familiar mixed-genotype quartets of males and of females, and of same-genotype unfamiliar female pairs. Results: We observed that Del/+ mice of both sexes increased significantly their locomotor activity compared to wild-type littermates. In the social domain, Del/+ mice of both sexes displayed widespread deficits, even more so in males than in females in quartets of familiar individuals. In pairs, significant perturbations of the organisation of the social communication and behaviours appeared in Del/+ females. Discussion: Altogether, this suggests that, over long recording periods, the phenotype of the 16p11.2 Del/+ mice was differently affected in the locomotor activity and the social domains and between the two sexes. These findings confirm the importance of testing models in long-term conditions to provide a comprehensive view of their phenotype that will refine the study of cellular and molecular mechanisms and complement pre-clinical targeted therapeutic trials.

5.
Front Behav Neurosci ; 15: 735920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720899

RESUMO

Ultrasonic vocalizations (USVs) are used as a phenotypic marker in mouse models of neuropsychiatric disorders. Nevertheless, current methodologies still require time-consuming manual input or sound recordings clean of any background noise. We developed a method to overcome these two restraints to boost knowledge on mouse USVs. The methods are freely available and the USV analysis runs online at https://usv.pasteur.cloud. As little is currently known about usage and structure of ultrasonic vocalizations during social interactions over the long-term and in unconstrained context, we investigated mouse spontaneous communication by coupling the analysis of USVs with automatic labeling of behaviors. We continuously recorded during 3 days undisturbed interactions of same-sex pairs of C57BL/6J sexually naive males and females at 5 weeks and 3 and 7 months of age. In same-sex interactions, we observed robust differences between males and females in the amount of USVs produced, in the acoustic structure and in the contexts of emission. The context-specific acoustic variations emerged with increasing age. The emission of USVs also reflected a high level of excitement during social interactions. We finally highlighted the importance of studying long-term spontaneous communication by investigating female mice lacking Shank3, a synaptic protein associated with autism. While the previous short-time constrained investigations could not detect USV emission abnormalities, our analysis revealed robust differences in the usage and structure of the USVs emitted by mutant mice compared to wild-type female pairs.

6.
Front Psychol ; 12: 680176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248780

RESUMO

Testosterone masculinizes male sexual behavior through an organizational and activational effects. We previously reported that the emission of ultrasonic vocalizations (USVs) in male mice was dependent on the organizational effects of testosterone; females treated with testosterone in the perinatal and peripubertal periods, but not in adults, had increased USV emissions compared to males. Recently, it was revealed that male USVs have various acoustic characteristics and these variations were related to behavioral interactions with other mice. In this regard, the detailed acoustic characteristic changes induced by testosterone have not been fully elucidated. Here, we revealed that testosterone administered to female and male mice modulated the acoustic characteristics of USVs. There was no clear difference in acoustic characteristics between males and females. Call frequencies were higher in testosterone propionate (TP)-treated males and females compared to control males and females. When the calls were classified into nine types, there was also no distinctive difference between males and females, but TP increased the number of calls with a high frequency, and decreased the number of calls with a low frequency and short duration. The transition analysis by call type revealed that even though there was no statistically significant difference, TP-treated males and females had a similar pattern of transition to control males and females, respectively. Collectively, these results suggest that testosterone treatment can enhance the emission of USVs both in male and female, but the acoustic characteristics of TP-treated females were not the same as those of intact males.

7.
J Cell Sci ; 133(22)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33093241

RESUMO

Accurate measurements of cell morphology and behaviour are fundamentally important for understanding how disease, molecules and drugs affect cell function in vivo Here, by using muscle stem cell (muSC) responses to injury in zebrafish as our biological paradigm, we established a 'ground truth' for muSC behaviour. This revealed that segmentation and tracking algorithms from commonly used programs are error-prone, leading us to develop a fast semi-automated image analysis pipeline that allows user-defined parameters for segmentation and correction of cell tracking. Cell Tracking Profiler (CTP) is a package that runs two existing programs, HK Means and Phagosight within the Icy image analysis suite, to enable user-managed cell tracking from 3D time-lapse datasets to provide measures of cell shape and movement. We demonstrate how CTP can be used to reveal changes to cell behaviour of muSCs in response to manipulation of the cell cytoskeleton by small-molecule inhibitors. CTP and the associated tools we have developed for analysis of outputs thus provide a powerful framework for analysing complex cell behaviour in vivo from 4D datasets that are not amenable to straightforward analysis.


Assuntos
Rastreamento de Células , Peixe-Zebra , Algoritmos , Animais , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Movimento
8.
J Vis Exp ; (161)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32744525

RESUMO

The last decade has been characterized by breakthroughs in fluorescence microscopy techniques illustrated by spatial resolution improvement but also in live-cell imaging and high-throughput microscopy techniques. This led to a constant increase in the amount and complexity of the microscopy data for a single experiment. Because manual analysis of microscopy data is very time consuming, subjective, and prohibits quantitative analyses, automation of bioimage analysis is becoming almost unavoidable. We built an informatics workflow called Substructure Analyzer to fully automate signal analysis in bioimages from fluorescent microscopy. This workflow is developed on the user-friendly open-source platform Icy and is completed by functionalities from ImageJ. It includes the pre-processing of images to improve the signal to noise ratio, the individual segmentation of cells (detection of cell boundaries) and the detection/quantification of cell bodies enriched in specific cell compartments. The main advantage of this workflow is to propose complex bio-imaging functionalities to users without image analysis expertise through a user-friendly interface. Moreover, it is highly modular and adapted to several issues from the characterization of nuclear/cytoplasmic translocation to the comparative analysis of different cell bodies in different cellular sub-structures. The functionality of this workflow is illustrated through the study of the Cajal (coiled) Bodies under oxidative stress (OS) conditions. Data from fluorescence microscopy show that their integrity in human cells is impacted a few hours after the induction of OS. This effect is characterized by a decrease of coilin nucleation into characteristic Cajal Bodies, associated with a nucleoplasmic redistribution of coilin into an increased number of smaller foci. The central role of coilin in the exchange between CB components and the surrounding nucleoplasm suggests that OS induced redistribution of coilin could affect the composition and the functionality of Cajal Bodies.


Assuntos
Corpo Celular/metabolismo , Microscopia de Fluorescência/métodos , Fluxo de Trabalho , Núcleo Celular , Humanos , Proteínas Nucleares
9.
Aging (Albany NY) ; 11(17): 6638-6656, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31514171

RESUMO

Dlx5 and Dlx6 encode two homeobox transcription factors expressed by developing and mature GABAergic interneurons. During development, Dlx5/6 play a role in the differentiation of certain GABAergic subclasses. Here we address the question of the functional role of Dlx5/6 in the mature central nervous system. First, we demonstrate that Dlx5 and Dlx6 are expressed by all subclasses of adult cortical GABAergic neurons. Then we analyze VgatΔDlx5-6 mice in which Dlx5 and Dlx6 are simultaneously inactivated in all GABAergic interneurons. VgatΔDlx5-6 mice present a behavioral pattern suggesting reduction of anxiety-like behavior and obsessive-compulsive activities, and a lower interest in nest building. Twenty-month-old VgatΔDlx5-6 animals have the same size as their normal littermates, but present a 25% body weight reduction associated with a marked decline in white and brown adipose tissue. Remarkably, both VgatΔDlx5-6/+ and VgatΔDlx5-6 mice present a 33% longer median survival. Hallmarks of biological aging such as motility, adiposity and coat conditions are improved in mutant animals. Our data imply that GABAergic interneurons can regulate healthspan and lifespan through Dlx5/6-dependent mechanisms. Understanding these regulations can be an entry point to unravel the processes through which the brain affects body homeostasis and, ultimately, longevity and healthy aging.


Assuntos
Neurônios GABAérgicos/metabolismo , Envelhecimento Saudável/metabolismo , Proteínas de Homeodomínio/metabolismo , Longevidade/fisiologia , Animais , Comportamento Animal/fisiologia , Interneurônios/metabolismo , Camundongos
10.
Nat Biomed Eng ; 3(11): 930-942, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31110290

RESUMO

Preclinical studies of psychiatric disorders use animal models to investigate the impact of environmental factors or genetic mutations on complex traits such as decision-making and social interactions. Here, we introduce a method for the real-time analysis of the behaviour of mice housed in groups of up to four over several days and in enriched environments. The method combines computer vision through a depth-sensing infrared camera, machine learning for animal and posture identification, and radio-frequency identification to monitor the quality of mouse tracking. It tracks multiple mice accurately, extracts a list of behavioural traits of both individuals and the groups of mice, and provides a phenotypic profile for each animal. We used the method to study the impact of Shank2 and Shank3 gene mutations-mutations that are associated with autism-on mouse behaviour. Characterization and integration of data from the behavioural profiles of Shank2 and Shank3 mutant female mice revealed their distinctive activity levels and involvement in complex social interactions.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/psicologia , Comportamento Animal , Aprendizado de Máquina , Proteínas do Tecido Nervoso/genética , Animais , Pesquisa Comportamental , Modelos Animais de Doenças , Feminino , Masculino , Camundongos/genética , Camundongos/psicologia , Camundongos Knockout/genética , Camundongos Knockout/psicologia , Proteínas dos Microfilamentos , Mutação , Fenótipo , Comportamento Social , Gravação em Vídeo
11.
Front Mol Neurosci ; 11: 365, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337855

RESUMO

Mouse models of autism can be used to study evolutionarily conserved mechanisms underlying behavioral abnormalities in social communication and repetitive behaviors. SHANK genes code for synaptic scaffolding proteins at excitatory synapses and mutations in all SHANK genes have been associated with autism. Here, we present three behavioral aspects of the mutant mice deleted for exon 16 in Shank2. First, we treated Shank2 mutant mice with methylphenidate to rescue the hyperactivity. Our failure to do so suggests that the hyperactivity displayed by Shank2 mutant mice is not related to the one displayed by the typical mouse models of hyperactivity, and might be more closely related to manic-like behaviors. Second, by testing the effect of group housing and social isolation on social interest, we highlighted that Shank2 mutant mice lack the typical flexibility to modulate social interest, in comparison with wild-type littermates. Finally, we established a new protocol to test for social recognition in a social context. We used this protocol to show that Shank2 mutant mice were able to discriminate familiar and unknown conspecifics in free interactions. Altogether, these studies shed some light on specific aspects of the behavioral defects displayed by the Shank2 mouse model. Such information could be used to orient therapeutic strategies and to design more specific tests to characterize the complex behavior of mouse models of autism.

12.
Brain Struct Funct ; 223(9): 4259-4274, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30196432

RESUMO

Social behavior and stress responses both rely on activity in the prefrontal cortex (PFC) and amygdala. We previously reported that acute stress exposure impoverishes social repertoire and triggers behavioral rigidity, and that both effects are modulated by ß2-containing nicotinic receptors. We, therefore, hypothesized that the activity of brain regions associated with the integration of social cues will be modulated by stress exposure. We mapped the expression of c-fos protein in all subregions of the PFC and basolateral (BLA) and central (Ce) areas of the amygdala in C57BL/6J (B6) and ß2-/- mice. We show altered brain activity and differences in functional connectivity between the two genotypes after stress: the PFC and BLA were hyperactivated in B6 and hypo-activated in ß2-/- mice, showing that the impact of stress on brain activity and functional organization depends on the nicotinic system. We also show that the effects of the opportunity to explore a novel environment or interact socially after acute stress depended on genotype: exploration induced only marginal PFC activation in both genotypes relative to stress alone, excluding a major role for ß2 receptors in this process. However, social interaction following stress only activated the rostral and caudolateral areas of the PFC in B6 mice, while it induced a kindling of activation in all PFC and amygdalar areas in ß2-/- mice. These results indicate that acute stress triggers important PFC-amygdala plasticity, social interaction has a buffering role during stress-induced brain activation, and ß2 receptors contribute to the effects of social interaction under stress.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores Nicotínicos/fisiologia , Comportamento Social , Estresse Psicológico/fisiopatologia , Animais , Genótipo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidades Proteicas/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo
13.
Elife ; 72018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30132756

RESUMO

Hematopoiesis leads to the formation of blood and immune cells. Hematopoietic stem cells emerge during development, from vascular components, via a process called the endothelial-to-hematopoietic transition (EHT). Here, we reveal essential biomechanical features of the EHT, using the zebrafish embryo imaged at unprecedented spatio-temporal resolution and an algorithm to unwrap the aorta into 2D-cartography. We show that the transition involves anisotropic contraction along the antero-posterior axis, with heterogenous organization of contractile circumferential actomyosin. The biomechanics of the contraction is oscillatory, with unusually long periods in comparison to other apical constriction mechanisms described so far in morphogenesis, and is supported by the anisotropic reinforcement of junctional contacts. Finally, we show that abrogation of blood flow impairs the actin cytoskeleton, the morphodynamics of EHT cells, and the orientation of the emergence. Overall, our results underline the peculiarities of the EHT biomechanics and the influence of the mechanical forces exerted by blood flow.


Assuntos
Actomiosina/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Peixe-Zebra/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Anisotropia , Fenômenos Biomecânicos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Hemodinâmica , Junções Intercelulares/metabolismo , Modelos Biológicos , Mutação/genética , Cadeias Leves de Miosina/metabolismo , Fenótipo , Fosforilação , Fatores de Tempo
14.
Cell Microbiol ; 19(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27376507

RESUMO

Salmonella Typhimurium is an intracellular bacterial pathogen that infects both epithelial cells and macrophages. Salmonella effector proteins, which are translocated into the host cell and manipulate host cell components, control the ability to replicate and/or survive in host cells. Due to the complexity and heterogeneity of Salmonella infections, there is growing recognition of the need for single-cell and live-cell imaging approaches to identify and characterize the diversity of cellular phenotypes and how they evolve over time. Here, we establish a pipeline for long-term (17 h) live-cell imaging of infected cells and subsequent image analysis methods. We apply this pipeline to track bacterial replication within the Salmonella-containing vacuole in epithelial cells, quantify vacuolar replication versus survival in macrophages and investigate the role of individual effector proteins in mediating these parameters. This approach revealed that dispersed bacteria can coalesce at later stages of infection, that the effector protein SseG influences the propensity for cytosolic hyper-replication in epithelial cells, and that while SteA only has a subtle effect on vacuolar replication in epithelial cells, it has a profound impact on infection parameters in immunocompetent macrophages, suggesting differential roles for effector proteins in different infection models.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Macrófagos/microbiologia , Salmonella typhimurium/patogenicidade , Vacúolos/microbiologia , Fatores de Virulência/metabolismo , Processamento de Imagem Assistida por Computador , Viabilidade Microbiana , Imagem Óptica , Salmonella typhimurium/crescimento & desenvolvimento , Análise de Célula Única
15.
F1000Res ; 5: 2332, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27830061

RESUMO

Ultrasonic vocalisation is a broadly used proxy to evaluate social communication in mouse models of neuropsychiatric disorders. The efficacy and robustness of testing these models suffer from limited knowledge of the structure and functions of these vocalisations as well as of the way to analyse the data. We created mouseTube, an open database with a web interface, to facilitate sharing and comparison of ultrasonic vocalisations data and metadata attached to a recording file. Metadata describe 1) the acquisition procedure, e.g., hardware, software, sampling frequency, bit depth; 2) the biological protocol used to elicit ultrasonic vocalisations; 3) the characteristics of the individual emitting ultrasonic vocalisations ( e.g., strain, sex, age). To promote open science and enable reproducibility, data are made freely available. The website provides searching functions to facilitate the retrieval of recording files of interest. It is designed to enable comparisons of ultrasonic vocalisation emission between strains, protocols or laboratories, as well as to test different analysis algorithms and to search for protocols established to elicit mouse ultrasonic vocalisations. Over the long term, users will be able to download and compare different analysis results for each data file. Such application will boost the knowledge on mouse ultrasonic communication and stimulate sharing and comparison of automatic analysis methods to refine phenotyping techniques in mouse models of neuropsychiatric disorders.

16.
EMBO J ; 35(19): 2120-2138, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27550960

RESUMO

Synucleinopathies such as Parkinson's disease are characterized by the pathological deposition of misfolded α-synuclein aggregates into inclusions throughout the central and peripheral nervous system. Mounting evidence suggests that intercellular propagation of α-synuclein aggregates may contribute to the neuropathology; however, the mechanism by which spread occurs is not fully understood. By using quantitative fluorescence microscopy with co-cultured neurons, here we show that α-synuclein fibrils efficiently transfer from donor to acceptor cells through tunneling nanotubes (TNTs) inside lysosomal vesicles. Following transfer through TNTs, α-synuclein fibrils are able to seed soluble α-synuclein aggregation in the cytosol of acceptor cells. We propose that donor cells overloaded with α-synuclein aggregates in lysosomes dispose of this material by hijacking TNT-mediated intercellular trafficking. Our findings thus reveal a possible novel role of TNTs and lysosomes in the progression of synucleinopathies.


Assuntos
Amiloide/metabolismo , Comunicação Celular , Lisossomos/metabolismo , Nanotubos , Neurônios/fisiologia , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Camundongos , Microscopia de Fluorescência
17.
J Vis Exp ; (112)2016 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-27341321

RESUMO

Mice emit ultrasonic vocalizations in different contexts throughout development and in adulthood. These vocal signals are now currently used as proxies for modeling the genetic bases of vocal communication deficits. Characterizing the vocal behavior of mouse models carrying mutations in genes associated with neuropsychiatric disorders such as autism spectrum disorders will help to understand the mechanisms leading to social communication deficits. We provide here protocols to reliably elicit ultrasonic vocalizations in pups and in adult mice. This standardization will help reduce inter-study variability due to the experimental settings. Pup isolation calls are recorded throughout development from individual pups isolated from dam and littermates. In adulthood, vocalizations are recorded during same-sex interactions (without a sexual component) by exposing socially motivated males or females to an unknown same-sex conspecific. We also provide a protocol to record vocalizations from adult males exposed to an estrus female. In this context, there is a sexual component in the interaction. These protocols are established to elicit a large amount of ultrasonic vocalizations in laboratory mice. However, we point out the important inter-individual variability in the vocal behavior of mice, which should be taken into account by recording a minimal number of individuals (at least 12 in each condition). These recordings of ultrasonic vocalizations are used to evaluate the call rate, the vocal repertoire and the acoustic structure of the calls. Data are combined with the analysis of synchronous video recordings to provide a more complete view on social communication in mice. These protocols are used to characterize the vocal communication deficits in mice lacking ProSAP1/Shank2, a gene associated with autism spectrum disorders. More ultrasonic vocalizations recordings can also be found on the mouseTube database, developed to favor the exchange of such data.


Assuntos
Comportamento Social , Vocalização Animal , Acústica , Animais , Feminino , Masculino , Camundongos , Ultrassom , Gravação em Vídeo
18.
J Neurosci ; 36(2): 518-31, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758842

RESUMO

Numerous clinical reports underscore the frequency of olfactory impairments in patients suffering from major depressive disorders (MDDs), yet the underlying physiopathological mechanisms remain poorly understood. We hypothesized that one key link between olfactory deficits and MDD lies in hypercortisolemia, a cardinal symptom of MDD. Corticosterone (CORT) is known to negatively correlate with hippocampal neurogenesis, yet its effects on olfactory neurogenesis and olfaction remain unknown. Here we used a rodent model of anxiety/depression-like states, which is based on chronic CORT administration and studied the effects of the antidepressant fluoxetine (FLX) on behavior, olfaction, and adult neurogenesis in the dentate gyrus (DG), olfactory bulb (OB), and the olfactory epithelium (OE). Chronic CORT had no effect on cell proliferation in the OE or on olfactory sensory neurons projecting to the OB, but induced pronounced deficits in olfactory acuity, fine discrimination of odorants and olfactory memory. These alterations were accompanied by a significant decrease in the number of adult-born neurons in both the DG and OB. Remarkably, FLX not only reversed depression-like states as expected, but also improved olfactory acuity, memory, and restored impaired adult neurogenesis. However, fine olfactory discrimination was not restored. Morphological analysis of adult-born neurons in both the DG and the OB showed that dendritic complexity was not significantly affected by CORT, but was increased by FLX. These findings demonstrate an essential role for glucocorticoids in triggering olfactory impairments in MDD and highlight a novel therapeutic effect of FLX. SIGNIFICANCE STATEMENT: Increasing clinical reports show that major depression is characterized by pronounced olfactory deficits, yet the underlying mechanisms remain unknown. In this work, we used an endocrine model of depression to study whether hypothalamic-pituitary-adrenal axis perturbation could be sufficient to provoke olfactory impairments. We found that chronic corticosterone not only induces marked deficits in olfactory acuity, fine discrimination and olfactory memory, but also significantly decreases bulbar and hippocampal neurogenesis. Importantly, the antidepressant fluoxetine restores both adult neurogenesis and depressive states, and improves most olfactory functions. Our data reveal that impairment of hypothalamic-pituitary-adrenal axis during depression can lead to olfactory deficits and that the neurogenic effects of selective serotonin reuptake inhibitor antidepressants can successfully restore certain olfactory functions.


Assuntos
Ansiedade/complicações , Depressão/complicações , Neurogênese/fisiologia , Transtornos do Olfato/etiologia , Transtornos do Olfato/patologia , Animais , Anti-Inflamatórios/toxicidade , Antidepressivos de Segunda Geração/uso terapêutico , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Corticosterona/toxicidade , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Fluoxetina/uso terapêutico , Asseio Animal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/patologia , Tempo de Reação/efeitos dos fármacos
19.
Am J Pathol ; 185(9): 2421-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26165863

RESUMO

Clinical data and experimental studies suggest that bronchial epithelium could serve as a portal of entry for invasive fungal infections. We therefore analyzed the interactions between molds and the bronchial/bronchiolar epithelium at the early steps after inhalation. We developed invasive aspergillosis (Aspergillus fumigatus) and mucormycosis (Lichtheimia corymbifera) murine models that mimic the main clinical risk factors for these infections. Histopathology studies were completed with a specific computer-assisted morphometric method to quantify bronchial and alveolar spores and with transmission electron microscopy. Morphometric analysis revealed a higher number of bronchial/bronchiolar spores for A. fumigatus than L. corymbifera. The bronchial/bronchiolar spores decreased between 1 and 18 hours after inoculation for both fungi, except in corticosteroid-treated mice infected with A. fumigatus, suggesting an effect of cortisone on bronchial spore clearance. No increase in the number of spores of any species was observed over time at the basal pole of the epithelium, suggesting the lack of transepithelial crossing. Transmission electron microscopy did not show spore internalization by bronchial epithelial cells. Instead, spores were phagocytized by mononuclear cells on the apical pole of epithelial cells. Early epithelial internalization of fungal spores in vivo cannot explain the bronchial/bronchiolar epithelium invasion observed in some invasive mold infections. The bioimaging approach provides a useful means to accurately enumerate and localize the fungal spores in the pulmonary tissues.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus , Células Epiteliais/ultraestrutura , Epitélio/patologia , Microscopia Eletrônica de Transmissão , Esporos Fúngicos/metabolismo , Animais , Aspergilose/metabolismo , Aspergilose/patologia , Permeabilidade da Membrana Celular , Modelos Animais de Doenças , Células Epiteliais/imunologia , Humanos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Fagocitose/imunologia
20.
PLoS One ; 10(3): e0121802, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806942

RESUMO

Social communication is heavily affected in patients with neuropsychiatric disorders. Accordingly, mouse models designed to study the mechanisms leading to these disorders are tested for this phenotypic trait. Test conditions vary between different models, and the effect of these test conditions on the quantity and quality of social interactions and ultrasonic communication is unknown. The present study examines to which extent the habituation time to the test cage as well as the shape/size of the cage influence social communication in freely interacting mice. We tested 8 pairs of male mice in free dyadic social interactions, with two habituation times (20 min and 30 min) and three cage formats (rectangle, round, square). We tested the effect of these conditions on the different types of social contacts, approach-escape sequences, follow behavior, and the time each animal spent in the vision field of the other one, as well as on the emission of ultrasonic vocalizations and their contexts of emission. We provide for the first time an integrated analysis of the social interaction behavior and ultrasonic vocalizations. Surprisingly, we did not highlight any significant effect of habituation time and cage shape/size on the behavioral events examined. There was only a slight increase of social interactions with the longer habituation time in the round cage. Remarkably, we also showed that vocalizations were emitted during specific behavioral sequences especially during close contact or approach behaviors. The present study provides a protocol reliably eliciting social contacts and ultrasonic vocalizations in adult male mice. This protocol is therefore well adapted for standardized investigation of social interactions in mouse models of neuropsychiatric disorders.


Assuntos
Comunicação Animal , Relações Interpessoais , Comportamento Social , Vocalização Animal/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ultrassom/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA