Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
JAMA Netw Open ; 7(4): e245678, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38592718

RESUMO

Importance: Ambient air pollution is a worldwide problem, not only related to respiratory and cardiovascular diseases but also to neurodegenerative disorders. Different pathways on how air pollutants could affect the brain are already known, but direct evidence of the presence of ambient particles (or nanoparticles) in the human adult brain is limited. Objective: To examine whether ambient black carbon particles can translocate to the brain and observe their biodistribution within the different brain regions. Design, Setting, and Participants: In this case series a label-free and biocompatible detection technique of nonincandescence-related white light generation was used to screen different regions of biobanked brains of 4 individuals from Belgium with neuropathologically confirmed Alzheimer disease for the presence of black carbon particles. The selected biological specimens were acquired and subsequently stored in a biorepository between April 2013 and April 2017. Black carbon measurements and data analysis were conducted between June 2020 and December 2022. Main Outcomes and Measures: The black carbon load was measured in various human brain regions. A Kruskal-Wallis test was used to compare black carbon loads across these regions, followed by Dunn multiple comparison tests. Results: Black carbon particles were directly visualized in the human brain of 4 individuals (3 women [75%]; mean [SD] age, 86 [13] years). Screening of the postmortem brain regions showed a significantly higher median (IQR) number of black carbon particles present in the thalamus (433.6 [289.5-540.2] particles per mm3), the prefrontal cortex including the olfactory bulb (420.8 [306.6-486.8] particles per mm3), and the hippocampus (364.7 [342.0-448.7] particles per mm3) compared with the cingulate cortex (192.3 [164.2-277.5] particles per mm3), amygdala (217.5 [147.3-244.5] particles per mm3), and the superior temporal gyrus (204.9 [167.9-236.8] particles per mm3). Conclusions and Relevance: This case series provides evidence that ambient air pollution particles are able to translocate to the human brain and accumulate in multiple brain regions involved in cognitive functioning. This phenomenon may contribute to the onset and development of neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Encéfalo , Adulto , Feminino , Humanos , Idoso de 80 Anos ou mais , Distribuição Tecidual , Cognição , Carbono
2.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328072

RESUMO

Cerebral (Aß) plaque and (pTau) tangle deposition are hallmarks of Alzheimer's disease (AD), yet are insufficient to confer complete AD-like neurodegeneration experimentally. Factors acting upstream of Aß/pTau in AD remain unknown, but their identification could enable earlier diagnosis and more effective treatments. T cell abnormalities are emerging AD hallmarks, and CD8 T cells were recently found to mediate neurodegeneration downstream of tangle deposition in hereditary neurodegeneration models. The precise impact of T cells downstream of Aß/fibrillar pTau, however, appears to vary depending on the animal model used. Our prior work suggested that antigen-specific memory CD8 T (" hi T") cells act upstream of Aß/pTau after brain injury. Here we examine whether hi T cells influence sporadic AD-like pathophysiology upstream of Aß/pTau. Examining neuropathology, gene expression, and behavior in our hi T mouse model we show that CD8 T cells induce plaque and tangle-like deposition, modulate AD-related genes, and ultimately result in progressive neurodegeneration with both gross and fine features of sporadic human AD. T cells required Perforin to initiate this pathophysiology, and IFNγ for most gene expression changes and progression to more widespread neurodegenerative disease. Analogous antigen-specific memory CD8 T cells were significantly elevated in the brains of human AD patients, and their loss from blood corresponded to sporadic AD and related cognitive decline better than plasma pTau-217, a promising AD biomarker candidate. Our work is the first to identify an age-related factor acting upstream of Aß/pTau to initiate AD-like pathophysiology, the mechanisms promoting its pathogenicity, and its relevance to human sporadic AD. Significance Statement: This study changes our view of Alzheimer's Disease (AD) initiation and progression. Mutations promoting cerebral beta-amyloid (Aß) deposition guarantee rare genetic forms of AD. Thus, the prevailing hypothesis has been that Aß is central to initiation and progression of all AD, despite contrary animal and patient evidence. We show that age-related T cells generate neurodegeneration with compelling features of AD in mice, with distinct T cell functions required for pathological initiation and neurodegenerative progression. Knowledge from these mice was applied to successfully predict previously unknown features of human AD and generate novel tools for its clinical management.

3.
J Alzheimers Dis ; 97(2): 953-961, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217596

RESUMO

BACKGROUND: Dementia is a multifactorial disease, with Alzheimer's disease (AD) and vascular pathology often co-occurring in many individuals with dementia. Yet, the interplay between AD and vascular pathology in cognitive decline is largely undetermined. OBJECTIVE: The aim of the present study was to examine the joint effect of arteriosclerosis and AD pathology on cognition in the general population without dementia. METHODS: We determined the interaction between blood-based AD biomarkers and CT-defined arteriosclerosis on cognition in 2,229 dementia-free participants of the population-based Rotterdam Study (mean age: 68.9 years, 52% women) cross-sectionally. RESULTS: Amyloid-ß (Aß)42 and arterial calcification were associated with cognitive performance. After further adjustment for confounders in a model that combined all biomarkers, only arterial calcification remained independently associated with cognition. There was a significant interaction between arterial calcification and Aß42 and between arterial calcification and the ratio of Aß42/40. Yet, estimates attenuated, and interactions were no longer statistically significant after adjustment for cardio metabolic risk factors. CONCLUSIONS: Arteriosclerosis and AD display additive interaction-effects on cognition in the general population, that are due in part to cardio metabolic risk factors. These findings suggest that joint assessment of arteriosclerosis and AD pathology is important for understanding of disease etiology in individuals with cognitive impairment.


Assuntos
Doença de Alzheimer , Arteriosclerose , Disfunção Cognitiva , Humanos , Feminino , Idoso , Masculino , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Cognição , Disfunção Cognitiva/metabolismo , Arteriosclerose/complicações , Arteriosclerose/diagnóstico por imagem , Biomarcadores , Proteínas tau
4.
medRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234807

RESUMO

Background: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73×10-3) in PSP. Conclusions: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.

6.
J Psychiatr Res ; 168: 30-37, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37875035

RESUMO

BACKGROUND: Personality traits have been associated with cognitive functioning and risk of cognitive decline. Fewer studies have investigated how personality facets are associated with cognition in large cohorts with a prospective design. METHODS: The association between eight personality facets and cognition (speed measures reflecting psychomotor speed and visual attention; hit rate measures reflecting visual learning and working memory) was analyzed in middle-aged adults from the Lifelines cohort (N = 79911; age 43 ± 11 years). RESULTS: High hostility, high vulnerability, low excitement seeking, and low competence were associated with worse cognitive performance on all tasks. Impulsivity-related facets had weak and differential associations, with self-discipline negatively associated with accuracy and deliberation negatively associated with speed. These associations remained largely unchanged when accounting for lifestyle factors (smoking, alcohol consumption, physical activity). The associations with cognition were stronger in older people for impulsiveness, deliberation, and hostility, while stronger in younger people for excitement seeking, self-discipline, and vulnerability. CONCLUSION: In a large population-based sample with a broad age range, the associations of personality facets with cognitive functioning had small effect sizes, were independent of lifestyle factors, and varied with age and among facets within the same personality domain. These findings highlight the importance of developmental stages and facet-level research in personality-cognition associations.


Assuntos
Disfunção Cognitiva , Personalidade , Adulto , Pessoa de Meia-Idade , Humanos , Idoso , Estudos de Coortes , Transtornos da Personalidade , Cognição
7.
Dement Geriatr Cogn Disord ; 52(5-6): 318-326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37806302

RESUMO

INTRODUCTION: Studies suggest a role of vitamin D in the progression and symptomatology of Alzheimer's disease (AD), with few in vitro studies pointing to effects on serotonergic and amyloidogenic turnover. However, limited data exist in AD patients on the potential association with cognition and behavioral and psychological signs and symptoms of dementia (BPSD). In this retrospective cross-sectional study, we, therefore, explored potential correlations of serum 25-hydroxyvitamin D3 (25(OH)D3) concentrations, indicative of vitamin D status, with serum serotonin (5-hydroxytryptamine, 5-HT) levels, cognitive/BPSD scorings, and cerebrospinal fluid (CSF) biomarker levels. METHODS: Frozen serum samples of 25 well-characterized AD subjects as part of a previous BPSD cohort were analyzed, of which 15 had a neuropathologically confirmed diagnosis. Serum 25(OH)D3 levels were analyzed by means of LC-MS/MS, whereas 5-HT concentrations were quantified by competitive ELISA. RESULTS: Among AD patients, vitamin D deficiency was highly prevalent, defined as levels below 50 nmol/L. Regression analyses, adjusted for age, gender, and psychotropic medications, revealed that serum 25(OH)D3 and 5-HT levels were positively associated (p = 0.012). Furthermore, serum 25(OH)D3 concentrations correlated inversely with CSF amyloid-beta (Aß1-42) levels (p = 0.006), and serum 5-HT levels correlated positively with aggressiveness (p = 0.001), frontal behavior (p = 0.001), depression (p = 0.004), and partly with cognitive performance (p < 0.005). Lastly, AD patients on cholinesterase inhibitors had higher serum 25(OH)D3 (p = 0.030) and lower serum 5-HT (p = 0.012) levels. CONCLUSIONS: The molecular associations between low vitamin D status, serum 5-HT, and CSF Aß1-42 levels are highly remarkable, warranting further mechanistic and intervention studies to disclose potential involvement in the clinico-biobehavioral pathophysiology of AD.


Assuntos
Doença de Alzheimer , Deficiência de Vitamina D , Humanos , Serotonina , Doença de Alzheimer/diagnóstico , Cromatografia Líquida , Estudos Transversais , Estudos Retrospectivos , Espectrometria de Massas em Tandem , Vitamina D , Calcifediol
8.
Life (Basel) ; 13(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895469

RESUMO

BACKGROUND: The Tau58/2 and Tau58/4 mouse lines expressing 0N4R tau with a P301S mutation mimic aspects of frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). In a side-by-side comparison, we report the age-dependent development of cognitive, motor, and behavioral deficits in comparison with the spatial-temporal evolution of cellular tau pathology in both models. METHODS: We applied the SHIRPA primary screen and specific neuromotor, behavioral, and cognitive paradigms. The spatiotemporal development of tau pathology was investigated immunohistochemically. Levels of sarkosyl-insoluble paired helical filaments were determined via a MesoScale Discovery biomarker assay. RESULTS: Neuromotor impairments developed from age 3 months in both models. On electron microscopy, spinal cord neurofibrillary pathology was visible in mice aged 3 months; however, AT8 immunoreactivity was not yet observed in Tau58/4 mice. Behavioral abnormalities and memory deficits occurred at a later stage (>9 months) when tau pathology was fully disseminated throughout the brain. Spatiotemporally, tau pathology spread from the spinal cord via the midbrain to the frontal cortex, while the hippocampus was relatively spared, thus explaining the late onset of cognitive deficits. CONCLUSIONS: Our findings indicate the face and construct validity of both Tau58 models, which may provide new, valuable insights into the pathologic effects of tau species in vivo and may consequently facilitate the development of new therapeutic targets to delay or halt neurodegenerative processes occurring in tauopathies.

9.
Nat Med ; 29(6): 1437-1447, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37095250

RESUMO

Tau plays a key role in Alzheimer's disease (AD) pathophysiology, and accumulating evidence suggests that lowering tau may reduce this pathology. We sought to inhibit MAPT expression with a tau-targeting antisense oligonucleotide (MAPTRx) and reduce tau levels in patients with mild AD. A randomized, double-blind, placebo-controlled, multiple-ascending dose phase 1b trial evaluated the safety, pharmacokinetics and target engagement of MAPTRx. Four ascending dose cohorts were enrolled sequentially and randomized 3:1 to intrathecal bolus administrations of MAPTRx or placebo every 4 or 12 weeks during the 13-week treatment period, followed by a 23 week post-treatment period. The primary endpoint was safety. The secondary endpoint was MAPTRx pharmacokinetics in cerebrospinal fluid (CSF). The prespecified key exploratory outcome was CSF total-tau protein concentration. Forty-six patients enrolled in the trial, of whom 34 were randomized to MAPTRx and 12 to placebo. Adverse events were reported in 94% of MAPTRx-treated patients and 75% of placebo-treated patients; all were mild or moderate. No serious adverse events were reported in MAPTRx-treated patients. Dose-dependent reduction in the CSF total-tau concentration was observed with greater than 50% mean reduction from baseline at 24 weeks post-last dose in the 60 mg (four doses) and 115 mg (two doses) MAPTRx groups. Clinicaltrials.gov registration number: NCT03186989 .


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/líquido cefalorraquidiano , Oligonucleotídeos Antissenso/uso terapêutico , Resultado do Tratamento , Método Duplo-Cego
10.
J Alzheimers Dis ; 90(4): 1739-1747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36336933

RESUMO

BACKGROUND: Distinguishing between Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) results in poor diagnostic accuracy. OBJECTIVE: To investigate the utility of electroencephalography (EEG)-based biomarkers in comparison and in addition to established cerebrospinal fluid (CSF) biomarkers in the AD versus FTLD differential diagnosis. METHODS: The study cohort comprised 37 AD and 30 FTLD patients, of which 17 AD and 9 FTLD patients had definite diagnoses. All participants had CSF neurochemical (NCM) biomarker analyses (Aß1-42, T-tau, P-tau181, and Nf-L) and underwent 19-channel resting-state EEG. From the EEG spectra, dominant frequency peaks were extracted in four regions resulting in four dominant frequencies. This produced eight features (4 NCM + 4 EEG). RESULTS: When NCM and EEG markers were combined, the diagnostic accuracy increased significantly. In the whole group, the accuracy went up from 79% (NCM) to almost 82%, while in the definite group only, it went up from around 85% to almost 95%. Two differences in the occurrence of the dominant EEG frequency were discovered: people lacking a clear dominant peak almost all had definite AD, while people with two peaks more often had FTLD. CONCLUSION: Combining EEG with NCM biomarkers resulted in differential diagnostic accuracies of 82% in clinically diagnosed AD and FTD patients and of 95% in patients having a definite diagnosis, which was significantly better than with EEG or NCM biomarkers alone. This suggests that NCM and EEG markers are complementary, revealing different aspects of the disease and therefore confirms again their relevance in developing additional diagnosis tools.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Projetos Piloto , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Diagnóstico Diferencial , Degeneração Lobar Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/líquido cefalorraquidiano , Demência Frontotemporal/diagnóstico , Biomarcadores/líquido cefalorraquidiano
11.
Acta Neuropathol ; 144(5): 821-842, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36066633

RESUMO

Amyloid-beta 42 (Aß42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aß42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aß42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Proteínas de Ciclo Celular , Humanos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/genética
12.
Clin Transl Sci ; 15(8): 2010-2023, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35649245

RESUMO

RIPK1 is a master regulator of inflammatory signaling and cell death and increased RIPK1 activity is observed in human diseases, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). RIPK1 inhibition has been shown to protect against cell death in a range of preclinical cellular and animal models of diseases. SAR443060 (previously DNL747) is a selective, orally bioavailable, central nervous system (CNS)-penetrant, small-molecule, reversible inhibitor of RIPK1. In three early-stage clinical trials in healthy subjects and patients with AD or ALS (NCT03757325 and NCT03757351), SAR443060 distributed into the cerebrospinal fluid (CSF) after oral administration and demonstrated robust peripheral target engagement as measured by a reduction in phosphorylation of RIPK1 at serine 166 (pRIPK1) in human peripheral blood mononuclear cells compared to baseline. RIPK1 inhibition was generally safe and well-tolerated in healthy volunteers and patients with AD or ALS. Taken together, the distribution into the CSF after oral administration, the peripheral proof-of-mechanism, and the safety profile of RIPK1 inhibition to date, suggest that therapeutic modulation of RIPK1 in the CNS is possible, conferring potential therapeutic promise for AD and ALS, as well as other neurodegenerative conditions. However, SAR443060 development was discontinued due to long-term nonclinical toxicology findings, although these nonclinical toxicology signals were not observed in the short duration dosing in any of the three early-stage clinical trials. The dose-limiting toxicities observed for SAR443060 preclinically have not been reported for other RIPK1-inhibitors, suggesting that these toxicities are compound-specific (related to SAR443060) rather than RIPK1 pathway-specific.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Proteína Serina-Treonina Quinases de Interação com Receptores , Doença de Alzheimer/tratamento farmacológico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores
13.
Ageing Res Rev ; 79: 101661, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35671869

RESUMO

Cerebral perfusion dysfunctions are seen in the early stages of Alzheimer's disease (AD). We systematically reviewed the literature to investigate the effect of pharmacological and non-pharmacological interventions on cerebral hemodynamics in randomized controlled trials involving AD patients or Mild Cognitive Impairment (MCI) due to AD. Studies involving other dementia types were excluded. Data was searched in April 2021 on MEDLINE, Embase, and Web of Science. Risk of bias was assessed using Cochrane Risk of Bias Tool. A meta-synthesis was performed separating results from MCI and AD studies. 31 studies were included and involved 310 MCI and 792 CE patients. The MCI studies (n = 8) included physical, cognitive, dietary, and pharmacological interventions. The AD studies (n = 23) included pharmacological, physical interventions, and phytotherapy. Cerebral perfusion was assessed with PET, ASL, Doppler, fNIRS, DSC-MRI, Xe-CT, and SPECT. Randomization and allocation concealment methods and subject characteristics such as AD-onset, education, and ethnicity were missing in several papers. Positive effects on hemodynamics were seen in 75 % of the MCI studies, and 52 % of the AD studies. Inserting cerebral perfusion outcome measures, together with established AD biomarkers, is fundamental to target all disease mechanisms and understand the role of cerebral perfusion in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/terapia , Biomarcadores , Circulação Cerebrovascular , Disfunção Cognitiva/terapia , Progressão da Doença , Humanos
14.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269879

RESUMO

Given the unprecedented rise in the world's population, the prevalence of prominent age-related disorders, like cardiovascular disease and dementia, will further increase. Recent experimental and epidemiological evidence suggests a mechanistic overlap between cardiovascular disease and dementia with a specific focus on the linkage between arterial stiffness, a strong independent predictor of cardiovascular disease, and/or hypertension with Alzheimer's disease. In the present study, we investigated whether pharmacological induction of arterial stiffness and hypertension with angiotensin II (1 µg·kg-1·min-1 for 28 days via an osmotic minipump) impairs the progression of Alzheimer's disease in two mouse models (hAPP23+/- and hAPPswe/PSEN1dE9 mice). Our results show increased arterial stiffness in vivo and hypertension in addition to cardiac hypertrophy after angiotensin II treatment. However, visuospatial learning and memory and pathological cerebral amyloid load in both Alzheimer's disease mouse models were not further impaired. It is likely that the 28-day treatment period with angiotensin II was too short to observe additional effects on cognition and cerebral pathology.


Assuntos
Doença de Alzheimer , Amiloidose , Doenças Cardiovasculares , Hipertensão , Rigidez Vascular , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Angiotensina II , Animais , Modelos Animais de Doenças , Camundongos
15.
Int Psychogeriatr ; 34(1): 47-59, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715659

RESUMO

OBJECTIVES: To investigate the presence, nature and direction of the daily temporal association between depressive symptoms, cognitive performance and sleep in older individuals. DESIGN, SETTING, PARTICIPANTS: Single-subject study design in eight older adults with cognitive impairments and depressive symptoms. MEASUREMENTS: For 63 consecutive days, depressive symptoms, working memory performance and night-time sleep duration were daily assessed with an electronic diary and actigraphy. The temporal associations of depressive symptoms, working memory and total sleep time were evaluated for each participant separately with time-series analysis (vector autoregressive modeling). RESULTS: For seven out of eight participants we found a temporal association between depressive symptoms and/or sleep and/or working memory performance. More depressive symptoms were preceded by longer sleep duration in one person (r = 0.39; p < .001), by longer or shorter sleep duration than usual in one other person (B = 0.49; p < .001), by worse working memory in one person (B = -0.45; p = .007), and by better working memory performance in one other person (B = 0.35; p = .009). Worse working memory performance was preceded by longer sleep duration (r = -.35; p = .005) in one person, by shorter or longer sleep duration in three other persons (B = -0.76; p = .005, B = -0.61; p < .001; B = -0.34; p = .002), and by more depressive symptoms in one person (B = -0.25; p = .009). CONCLUSION: The presence, nature and direction of the temporal associations between depressive symptoms, cognitive performance and sleep differed between individuals. Knowledge of personal temporal associations may be valuable for the development of personalized intervention strategies in order to maintain their health, quality of life, functional outcomes and independence.


Assuntos
Disfunção Cognitiva , Depressão , Idoso , Idoso de 80 Anos ou mais , Cognição , Depressão/psicologia , Humanos , Qualidade de Vida , Sono
16.
Behav Brain Res ; 418: 113649, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34728276

RESUMO

During the last decades, most of the preclinical neurodegenerative research was performed in mouse models of amyloidosis, tauopathies or α-synucleinopathies preferentially maintained on a C57BL/6J background. However, comprehensive neurobehavioural data from C57BL/6J mice outlining the critical point of spontaneous cognitive decline are incomplete. In this study, we aimed for the neurobehavioural phenotyping of hippocampus-dependent spatial learning and memory of aging C57BL/6J mice. Neurobehavioural phenotyping was performed by means of a Morris Water Maze (MWM) and a Novel Object Recognition (NOR) test. MWM measurements revealed signs of age-related memory loss in C57BL/6J animals from the age of 6 months onward. The NOR assessment strengthened latter finding by decreasing discrimination indexes (DI) and recognition indexes (RI) starting from the age of 6 months. Taken together, these findings contribute to the current knowledge of spontaneous cognitive behaviours of this perhaps most widely used mouse strain and serve as a benchmark for dementia mouse models to distinguish spontaneous from pathological neurodegenerative behaviour.


Assuntos
Envelhecimento/fisiologia , Disfunção Cognitiva/fisiopatologia , Memória/fisiologia , Camundongos Endogâmicos C57BL , Aprendizagem Espacial/fisiologia , Animais , Modelos Animais de Doenças , Hipocampo , Masculino , Camundongos , Teste do Labirinto Aquático de Morris , Teste de Campo Aberto
17.
Biomedicines ; 9(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944725

RESUMO

Increasing epidemiological and experimental evidence points to a link between arterial stiffness and rapid cognitive decline. However, the underlying mechanism linking the two diseases is still unknown. The importance of nitric oxide synthases in both diseases is well-defined. In this study, we introduced arterial stiffness in both genetic (eNOS-/-, endothelial nitric oxide synthase knockout) and pharmacological (N(G)-nitro-L-arginine methyl ester (L-NAME) treatment) NO dysfunction models to study their association with cognitive decline. Our findings demonstrate that the non-selective inhibition of NOS activity with L-NAME induces cardiac dysfunction, arterial stiffness, and a decline in hippocampal-dependent learning and memory. This outcome demonstrates the importance of neuronal NOS (nNOS) in both cardiovascular and neurological pathophysiology and its potential contribution in the convergence between arterial stiffness and cognitive decline.

18.
Dement Geriatr Cogn Dis Extra ; 11(3): 235-249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721501

RESUMO

INTRODUCTION: Progression of amnestic mild cognitive impairment (aMCI) to Alzheimer's disease (AD) is a clinical event with highly variable progression rates varying from 10-15% up to 30-34%. Functional connectivity (FC), the temporal similarity between spatially remote neurophysiological events, has previously been reported to differ between aMCI patients who progress to AD (pMCI) and those who do not (i.e., remain stable; sMCI). However, these reports had a short-term follow-up and do not provide insight into long-term AD progression. METHODS: Seventy-nine participants with a baseline and 78 with a 12-month, 51 with a 24-month, and 22 with a +48-month follow-up resting-state fMRI with aMCI diagnosis from the Alzheimer's Disease Neuroimaging Initiative database were included. FC was assessed using the CONN toolbox. Local correlation and group independent component analysis were utilized to compare regional functional coupling and between-network FC, respectively, between sMCI and pMCI groups. Two-sample t tests were used to test for statistically significant differences between groups, and paired t-tests were used to assess cognitive changes over time. RESULTS: All participants (i.e., 66 sMCI and 19 pMCI) had a baseline and a year follow-up fMRI scan. Progression from aMCI to AD occurred in 19 patients (10 at 12 months, 5 at 24 months, and 4 at >48 months), while 73 MCI patients remained cognitively stable (sMCI). The pMCI and sMCI cognitive profiles were different. More between-network FC than regional functional coupling differences were present between sMCI and pMCI patients. Activation in the salience network (SN) and the default mode network (DMN) was consistently different between sMCI and pMCI patients across time. DISCUSSION: sMCI and pMCI patients have different cognitive and FC profiles. Only pMCI patients showed cognitive differences across time. The DMN and SN showed local correlation and between-network FC differences between the sMCI and pMCI patient groups at multiple moments in time.

19.
Neurochem Int ; 150: 105185, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555475

RESUMO

Even though the involvement of serotonin (5-hydroxytryptamine; 5-HT) and its receptors in Alzheimer's disease (AD) is widely accepted, data on the expression and the role of 5-HT7 receptors in AD is relatively limited. Therefore, the objective of the present work was to study the expression of serotonergic 5-HT7 receptors in postmortem samples of AD brains and correlate it with neurotransmitter levels, cognition and behavior. The study population consisted of clinically well-characterized and neuropathologically confirmed AD patients (n = 42) and age-matched control subjects (n = 18). Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and high-performance liquid chromatography were performed on Brodmann area (BA) 7, BA10, BA22, BA24, hippocampus, amygdala, thalamus and cerebellum to measure mRNA levels of 5-HT7 receptors (HTR7), as well as the concentrations of various monoamine neurotransmitters and their metabolites. Decreased levels of HTR7 mRNA were observed in BA10. A significant association was observed between HTR7 levels in BA10 and BEHAVE-AD cluster B (hallucinations) (rs(28) = 0.444, P < 0.05). In addition, a negative correlation was observed between HTR7 levels in BA10 and both MHPG concentrations in this brain region (rs(45) = -0.311; P < 0.05), and DOPAC levels in the amygdala (rs(42) = -0.311; P < 0.05). Quite surprisingly, no association was found between HTR7 levels and cognitive status. Altogether, this study supports the notion of the involvement of 5-HT7 receptors in psychotic symptoms in AD, suggesting the interest of testing antagonist acting at this receptor to specifically treat psychotic symptoms in this illness.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Receptores de Serotonina/biossíntese , Serotonina/biossíntese , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Química Encefálica/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Serotonina/análise , Receptores de Serotonina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Serotonina/análise , Serotonina/genética
20.
Am J Physiol Heart Circ Physiol ; 321(5): H905-H919, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506227

RESUMO

Alzheimer's disease (AD) has long been considered a brain-specific dementia syndrome. However, in recent decades, the occurrence of cardiovascular (CV) disease in the progression of AD has been confirmed by increasing epidemiological evidence. In this study, we conducted an in-depth cardiovascular characterization of a humanized amyloid precursor protein (APP) overexpressing mouse model (hAPP23+/-), which overexpresses the Swedish mutation (KM670/671NL). At the age of 6 mo, hAPP23+/- mice had a lower survival, lower body weight, and increased corticosterone and VMA levels compared with C57BL/6 littermates. Systolic blood pressure was increased in hAPP23+/- animals compared with C57BL/6 littermates, but diastolic blood pressure was not statistically different. Pulse pressure remained unchanged but abdominal and carotid pulse-wave velocity (aPWV and cPWV) were increased in hAPP23+/- compared with C57BL/6 mice. Echocardiography showed no differences in systolic or diastolic cardiac function. Ex vivo evaluation of vascular function showed decreased adreno receptor dependent vasoconstriction of hAPP23+/- aortic segments, although the isobaric biomechanics of the aortic wall were similar to C57BL/6 aortic segments. In conclusion, hAPP23+/- mice exhibited high serum corticosterone levels, elevated systolic blood pressure, and increased arterial stiffness in vivo. However, ex vivo aortic stiffness of hAPP23+/- aortic segments was not changed and vascular reactivity to α1-adrenoceptor stimulation was attenuated. These findings highlight the need for more frequent assessment of circulating stress hormone levels and PWV measurements in daily clinical practice for people at risk of AD.NEW & NOTEWORTHY We showed that male amyloid precursor protein (APP) transgenic mice have higher circulating stress hormone levels. As a result, higher systolic blood pressure and pulse-wave velocity were measured in vivo in addition to a smaller α-adrenergic receptor-dependent contraction upon ex vivo stimulation with phenylephrine. Our findings highlight the need for more frequent assessment of circulating stress hormone levels and PWV measurements in daily clinical practice for people at risk of Alzheimer's disease.


Assuntos
Doença de Alzheimer/sangue , Precursor de Proteína beta-Amiloide/metabolismo , Aorta Torácica/metabolismo , Pressão Arterial , Corticosterona/sangue , Rigidez Vascular , Vasoconstrição , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Receptores Adrenérgicos alfa 1/metabolismo , Regulação para Cima , Vasoconstrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA