Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mov Disord ; 39(4): 723-728, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38357858

RESUMO

BACKGROUND: The architecture and composition of glial (GCI) and neuronal (NCI) α-synuclein inclusions observed in multiple system atrophy (MSA) remain to be precisely defined to better understand the disease. METHODS: Here, we used stochastic optical reconstruction microscopy (STORM) to characterize the nanoscale organization of glial (GCI) and neuronal (NCI) α-synuclein inclusions in cryopreserved brain sections from MSA patients. RESULTS: STORM revealed a dense cross-linked internal structure of α-synuclein in all GCI and NCI. The internal architecture of hyperphosphorylated α-synuclein (p-αSyn) inclusions was similar in glial and neuronal cells, suggesting a common aggregation mechanism. A similar sequence of p-αSyn stepwise intracellular aggregation was defined in oligodendrocytes and neurons, starting from the perinuclear area and growing inside the cells. Consistent with this hypothesis, we found a higher mitochondrial density in GCI and NCI compared to oligodendrocytes and neurons from unaffected donors (P < 0.01), suggesting an active recruitment of the organelles during the aggregation process. CONCLUSIONS: These first STORM images of GCI and NCI suggest stepwise α-synuclein aggregation in MSA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Corpos de Inclusão , Atrofia de Múltiplos Sistemas , Neurônios , alfa-Sinucleína , Humanos , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/metabolismo , alfa-Sinucleína/metabolismo , Corpos de Inclusão/patologia , Corpos de Inclusão/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Feminino , Idoso , Masculino , Pessoa de Meia-Idade , Encéfalo/patologia , Encéfalo/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Oligodendroglia/patologia , Oligodendroglia/metabolismo , Microscopia/métodos
3.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G429-G435, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37643021

RESUMO

Gut-brain axis and inflammation are two hot topics in Parkinson's disease (PD). In this setting, the leucine-rich repeat kinase 2 (LRRK2) gene, which encodes the eponym protein, has attracted much attention. LRRK2 is not only the gene most commonly associated with Parkinson's disease but also a susceptibility gene for Crohn's disease (CD), thereby suggesting that it may sit at the crossroads of gastrointestinal inflammation, Parkinson's, and Crohn's disease. In contrast to the accumulated data on LRRK2 in the central nervous system (CNS), research on LRRK2 in the digestive tract is still in its infancy, and the scope of the present review article is therefore to review existing studies on LRRK2 in the gastrointestinal tract in both physiological and pathological conditions. In light of current data on LRRK2 in the gastrointestinal tract, we discuss if LRRK2 could be or not regarded as a molecular link between gut inflammation, Parkinson's disease, and Crohn's disease, and we suggest directions for future research.

4.
J Neurochem ; 164(2): 193-209, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219522

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) gene, which is the gene most commonly associated with Parkinson's disease (PD), is also a susceptibility gene for Crohn's disease, thereby suggesting that LRRK2 may sit at the crossroads of gastrointestinal inflammation, Parkinson's, and Crohn's disease. LRRK2 protein has been studied intensely in both CNS neurons and in immune cells, but there are only few studies on LRRK2 in the enteric nervous system (ENS). LRRK2 is present in ENS ganglia and the existing studies on LRRK2 expression in colonic biopsies from PD subjects have yielded conflicting results. Herein, we propose to extend these findings by studying in more details LRRK2 expression in the ENS. LRRK2 expression was evaluated in full thickness segments of colon of 16 Lewy body, 12 non-Lewy body disorders cases, and 3 non-neurodegenerative controls and in various enteric neural cell lines. We showed that, in addition to enteric neurons, LRRK2 is constitutively expressed in enteric glial cells in both fetal and adult tissues. LRRK2 immunofluorescence intensity in the myenteric ganglia was not different between Lewy body and non-Lewy body disorders. Additionally, we identified the cAMP pathway as a key signaling pathway involved in the regulation of LRRK2 expression and phosphorylation in the enteric glial cells. Our study is the first detailed characterization of LRRK2 in the ENS and the first to show that enteric glial cells express LRRK2. Our findings provide a basis to unravel the functions of LRRK2 in the ENS and to further investigate the pathological changes in enteric synucleinopathies.


Assuntos
Doença de Crohn , Sistema Nervoso Entérico , Doença de Parkinson , Adulto , Humanos , Animais , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Sistema Nervoso Entérico/metabolismo , Doença de Parkinson/metabolismo , Neurônios/metabolismo , Linhagem Celular , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo
5.
Neurogastroenterol Motil ; 34(6): e14354, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35279896

RESUMO

BACKGROUND: It is now well established that phosphorylated alpha-synuclein histopathology, the pathologic hallmark of Parkinson's disease (PD) is not limited to the brain but also extends to the enteric nervous system (ENS). This observation led to the hypothesis that the ENS could play a pivotal role in the development of PD. Research on the enteric synucleinopathy has, however, been hampered by difficulties in detecting phosphorylated alpha-synuclein in the ENS by Western blotting, even when the transferred membrane is fixed with an optimized protocol. This suggests that the available antibodies used in previous studies lacked of sensitivity for the detection of phosphorylated alpha-synuclein at Ser129 in enteric neurons. Here, we evaluated three recent commercially available phospho-alpha-synuclein antibodies and compared them to two antibodies used in previous research. METHODS: The specificity and sensitivity of the 5 antibodies were evaluated by Western blot performed with recombinant alpha-synuclein and with protein lysates from rat primary cultures of ENS. In primary culture of ENS, additional experiments were performed with the most specific antibody in order to modulate alpha-synuclein phosphorylation and to validate its utilization in immunofluorescence experiments. RESULTS: The rabbit monoclonal antibody D1R1R uniquely and robustly detected endogenous phosphorylated alpha-synuclein at Ser129 in rat primary culture of ENS without any non-specific bands, allowing for a reliable analysis of phosphorylated alpha-synuclein regulation by pharmacologic means. CONCLUSIONS AND INFERENCES: Using D1R1R antibody together with the optimized protocol for membrane fixation may help deciphering the signaling pathways involved in enteric alpha-synuclein post-translational regulation in PD.


Assuntos
Sistema Nervoso Entérico , Doença de Parkinson , Animais , Western Blotting , Sistema Nervoso Entérico/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Ratos , alfa-Sinucleína
7.
J Neural Transm (Vienna) ; 129(9): 1095-1103, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34816335

RESUMO

Alpha-synuclein deposits, the pathological hallmarks of Parkinson's disease, are consistently found in the gastrointestinal tract of parkinsonian subjects. These observations have raised the potential that endoscopically obtainable mucosal biopsies can aid to a molecular diagnosis of the disease. The possible usefulness of mucosal biopsies is, however, not limited to the detection of alpha-synuclein, but also extends to other essential aspects underlying pathophysiological mechanisms of gastrointestinal manifestations in Parkinson's disease. The aim of the current review is to provide an appraisal of the existing studies showing that gastrointestinal biopsies can be used for the analysis of enteric neuronal and glial cell morphology, intestinal epithelial barrier function, and gastrointestinal inflammation in Parkinson's disease. A perspective on the generation of organoids with GI biopsies and the potential use of single-cell and spatial transcriptomic technologies will be also addressed.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Biópsia , Trato Gastrointestinal/química , Trato Gastrointestinal/patologia , Humanos , Neurônios/patologia , Doença de Parkinson/diagnóstico , alfa-Sinucleína/análise
8.
Front Neurosci ; 16: 1062253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685225

RESUMO

The enteric nervous system (ENS) is the intrinsic nervous system that innervates the entire digestive tract and regulates major digestive functions. Recent evidence has shown that functions of the ENS critically rely on enteric neuronal connectivity; however, experimental models to decipher the underlying mechanisms are limited. Compared to the central nervous system, for which pure neuronal cultures have been developed for decades and are recognized as a reference in the field of neuroscience, an equivalent model for enteric neurons is lacking. In this study, we developed a novel model of highly pure rat embryonic enteric neurons with dense and functional synaptic networks. The methodology is simple and relatively fast. We characterized enteric neurons using immunohistochemical, morphological, and electrophysiological approaches. In particular, we demonstrated the applicability of this culture model to multi-electrode array technology as a new approach for monitoring enteric neuronal network activity. This in vitro model of highly pure enteric neurons represents a valuable new tool for better understanding the mechanisms involved in the establishment and maintenance of enteric neuron synaptic connectivity and functional networks.

9.
Brain Commun ; 4(6): fcac319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36751501

RESUMO

Idiopathic normal pressure hydrocephalus has a complex multifactorial pathogenesis and is associated with Alzheimer's disease in many patients. To date, it is not well known if a similar association exists with behavioural variant of frontotemporal lobar degeneration. In a first step, we compare the prevalence of idiopathic normal pressure hydrocephalus in two groups of patients, one with behavioural variant of frontotemporal lobar degeneration (n = 69) and the other with Alzheimer's disease (n = 178). In the second step, we describe more precisely the phenotype of patients with the association of idiopathic normal pressure hydrocephalus and behavioural variant of frontotemporal lobar degeneration. Firstly, we report that the prevalence of idiopathic normal pressure hydrocephalus was far higher in the group of patients with behavioural variant of frontotemporal lobar degeneration than in the group of patients with Alzheimer's disease (7.25% and 1.1%, respectively, P = 0.02). Secondly, we show that patients with the double diagnosis share common clinical and para-clinical features of both idiopathic normal pressure hydrocephalus and behavioural variant of frontotemporal lobar degeneration patients, including CSF shunting efficacy in real-life experience. Overall, our results suggest a link between these two conditions and should encourage neurologists to look for idiopathic normal pressure hydrocephalus in their behavioural variant of frontotemporal lobar degeneration patients in the event of gait disturbances; the benefit/risk balance could indeed be in favour of shunt surgery for selected patients with this newly described entity.

11.
FASEB J ; 34(7): 9285-9296, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32436623

RESUMO

A sizeable body of evidence has recently emerged to suggest that gastrointestinal (GI) inflammation might be involved in the development of Parkinson's disease (PD). There is now strong epidemiological and genetical evidence linking PD to inflammatory bowel diseases and we recently demonstrated that the neuronal protein alpha-synuclein, which is critically involved in PD pathophysiology, is upregulated in inflamed segments of Crohn's colon. The microtubule associated protein tau is another neuronal protein critically involved in neurodegenerative disorders but, in contrast to alpha-synuclein, no data are available about its expression and phosphorylation patterns in inflammatory bowel diseases. Here, we examined the expression levels of tau isoforms, their phosphorylation profile and truncation in colon biopsy specimens from 16 Crohn's disease (CD) and 6 ulcerative colitis (UC) patients and compared them to samples from 16 controls. Additional experiments were performed in full thickness segments of colon of five CD and five control subjects, in primary cultures of rat enteric neurons and in nuclear factor erythroid 2-related factor (Nrf2) knockout mice. Our results show the upregulation of two main human tau isoforms in the enteric nervous system (ENS) in CD but not in UC. This upregulation was not transcriptionally regulated but instead likely resulted from a decrease in protein clearance via an Nrf2 pathway. Our findings, which provide the first detailed characterization of tau in CD, suggest that the key proteins involved in neurodegenerative disorders such as alpha-synuclein and tau, might also play a role in CD.


Assuntos
Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Trato Gastrointestinal/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Proteínas tau/metabolismo , Animais , Estudos de Casos e Controles , Colite Ulcerativa/patologia , Doença de Crohn/patologia , Feminino , Trato Gastrointestinal/patologia , Humanos , Masculino , Camundongos
12.
Free Neuropathol ; 12020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37283671

RESUMO

An accumulating body of literature has emerged in the past 25 years to show that Parkinson's disease (PD) is not only a disorder of the brain but also of the gastrointestinal tract and more generally of the gut-brain axis. Gastrointestinal symptoms occur in almost every PD patient at some point and in nearly every case examined pathologically autopsy studies find alpha-synuclein deposits, the pathological hallmarks of PD, in the enteric nervous system. This concept of 'enteric synucleinopathy' led to the hypothesis that the enteric nervous system might play a pivotal role in the initiation and spreading of PD. Although this hypothesis opens up interesting perspectives on the pathogenesis of neurodegenerative disorders, some important questions are still pending. The present opinion paper describes and compares the physiological and pathophysiological properties of alpha-synuclein in the brain and the enteric nervous system. We conclude that the existing data supports the existence of pathological alpha-synuclein species in the gut in PD. We also discuss if gut-brain interactions are important in other neurodegenerative disorders.

13.
Mol Ther ; 24(2): 206-216, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26447927

RESUMO

Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease arising from mutations in ß-d-glucuronidase (GUSB), which results in glycosaminoglycan (GAG) accumulation and a variety of clinical manifestations including neurological disease. Herein, MPS VII dogs were injected intravenously (i.v.) and/or intrathecally (i.t.) via the cisterna magna with AAV9 or AAVrh10 vectors carrying the canine GUSB cDNA. Although i.v. injection alone at 3 days of age resulted in normal cerebrospinal fluid (CSF) GUSB activity, brain tissue homogenates had only ~1 to 6% normal GUSB activity and continued to have elevated GAG storage. In contrast, i.t. injection at 3 weeks of age resulted in CSF GUSB activity 44-fold normal while brain tissue homogenates had >100% normal GUSB activity and reduced GAGs compared with untreated dogs. Markers for secondary storage and inflammation were eliminated in i.t.-treated dogs and reduced in i.v.-treated dogs compared with untreated dogs. Given that i.t.-treated dogs expressed higher levels of GUSB in the CNS tissues compared to those treated i.v., we conclude that i.t. injection of AAV9 or AAVrh10 vectors is more effective than i.v. injection alone in the large animal model of MPS VII.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Terapia Genética/métodos , Glucuronidase/genética , Mucopolissacaridose VII/terapia , Animais , Animais Recém-Nascidos , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Cães , Vetores Genéticos/administração & dosagem , Glucuronidase/líquido cefalorraquidiano , Glicosaminoglicanos/metabolismo , Injeções Intravenosas , Injeções Espinhais , Masculino , Mucopolissacaridose VII/complicações , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA