Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 2): 126752, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37678694

RESUMO

Herein, a novel magnetic adsorbent (BC/AA/MN@Fe3O4) was successfully prepared from waste bamboo fiber tissue and montmorillonite, and subsequently applied for the highly selective removal of malachite green (MG, removal efficiency = 97.3 %) from the mixed dye solution of MG with methyl orange (MO, removal efficiency = 4.5 %). The magnetic adsorbent has a high porosity with abundant mesopores. In the single dye MG solution, the adsorbent could effectively remove MG over a wide pH range from 4 to 10, and the maximum adsorption capacity (qmax) was 2282.3 mg/g. Moreover, the magnetic adsorbent could remove MG from various solutions including mixed dye solution, high salinity solution, and real river water dye solution. The thermodynamic results proved that the adsorption process of MG was spontaneous and endothermic. The adsorption of MG was due to the comprehensive effects of electrostatic attraction, hydrogen bonding interactions and ions exchange, between the adsorbent and MG. Furthermore, the BC/AA/MN@Fe3O4 exhibited an excellent reusability with adsorption efficiency above 53.4 % after five consecutive cycles. Therefore, the prepared magnetic nanocellulose-based adsorbent was expected to be a promising material for highly selective adsorption and separation of MG from mixed dye solution.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Corantes de Rosanilina , Termodinâmica , Adsorção , Fenômenos Magnéticos , Concentração de Íons de Hidrogênio , Cinética
2.
Int J Biol Macromol ; 249: 126118, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37541474

RESUMO

Metal-organic frames (MOFs) have been recognized as one of the best candidates in the remediation of aqueous contaminants, while the fragile powder shape restricts the practical implementation. In this work, a shapeable, rebuildable, and multifunctional MOF composite (MIL-53@CF) was prepared from MIL-53 (Fe) and cellulose fiber (CF) using a simple ultrasonic method for adsorption and photocatalytic degradation of organic pollutants in wastewater. The results showed MIL-53(Fe) crystals were uniformly growth on CF surfaces and bonded with surface nanofibrils of CF through physical crosslinking and hydrogen bonding. Because of the high bonding strength, the MIL-53@CF composite exhibited an excellent compressive strength (3.53 MPa). More importantly, the MIL-53@CF composite was rebuildable through mechanical destruction followed by re-ultrasonication, suggesting the excellent reusability of MIL-53@CF for water remediation. The MIL-53@CF composite also had high adsorption capacities for methyl orange (884.6 mg·g-1), methylene blue (198.3 mg·g-1), and tetracycline (106.4 mg·g-1). MIL-53@CF composite could degrade TC through photocatalysis. The photocatalytic degradation mechanism was attributed to the Fe(II)/Fe(III) transform cycle reaction of MIL-53 crystal located on MIL-53@CF. Furthermore, the mechanical property and remoldability of MIL-53@CF composite increased its practicability. Comprehensively, MIL-53@CF composite provided a possible strategy to practically apply MOF in the remediation of aqueous contaminants.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Estruturas Metalorgânicas/química , Compostos Férricos , Celulose , Ultrassom , Poluentes Químicos da Água/química , Água
3.
Environ Sci Pollut Res Int ; 30(41): 93817-93829, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37523089

RESUMO

Dye-contaminated water has caused a worldwide pollution, which is threatening aquatic organisms and human health. In this work, a pressure-driven foam adsorbent (PFA) was bioinspired from the tapestry turban for purifying the dye-contaminated water. The PFA was prepared using an one-step method from nanocellulose (NC), amino-functionalized ZIF-8 (ZIF-8-NH2), and high resilience polyurethane foam (PUF). It was applied to efficiently remove methyl orange (MO) and crystal violet (CV) dyes from dye-contaminated waste solutions. The maximum adsorption capacity of PFA for MO and CV was 225.9 mg/g (25 °C, pH = 2) and 41.6 mg/g (25 °C, pH = 10), respectively, which were acceptable as compared with the reported works. The dyes could be efficiently removed from various river water samples. After 5 cycles, the removal efficiencies of MO and CV decreased from 92.0% and 85.7% to 84.7% and 76.1%, respectively. Moreover, the PFA relied on pressure-driven force to release the purified water under a low pressure.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Corantes/química , Água/química , Poluição da Água , Purificação da Água/métodos , Adsorção , Poluentes Químicos da Água/química , Cinética
4.
Gels ; 9(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36661806

RESUMO

In recent years, the scarcity of pure water resources has received a lot of attention from society because of the increasing amount of pollution from industrial waste. It is very important to use low-cost adsorbents with high-adsorption performance to reduce water pollution. In this work, a gel adsorbent with a high-adsorption performance on methylene blue (MB) and Cu(II) was prepared from bamboo nanocellulose (BCNF) (derived from waste bamboo paper) and montmorillonite nanosheet (MMTNS) cross-linked by polyethyleneimine (PEI). The resulting gel adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS), etc. The results indicated that the MB and Cu(II) adsorption capacities of the resulting gel adsorbent increased with the solution pH, contact time, initial concentration, and temperature before equilibrium. The adsorption processes of MB and Cu(II) fitted well with the fractal-like pseudo-second-order model. The maximal adsorption capacities on MB and Cu(II) calculated by the Sips model were 361.9 and 254.6 mg/g, respectively. The removal of MB and Cu(II) from aqueous solutions mainly included electrostatic attraction, ion exchange, hydrogen bonding interaction, etc. These results suggest that the resulting gel adsorbent is an ideal material for the removal of MB and Cu(II) from aqueous solutions.

5.
ACS Omega ; 6(36): 23447-23459, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34549143

RESUMO

Human health is being threatened by cationic pollutants in wastewater, for example, methylene blue (MB) and Cu(II). Our research team successfully fabricated biofoam adsorbents from recycled bamboo waste that removed cationic pollutants via introducing bamboo fiber sources, i.e., bamboo fiber, bamboo α-cellulose fiber, and bamboo nanocellulose fiber, into a polyurethane (PU) foam matrix. The biofoam adsorbent with 1 g of nanocellulose (PUN1) presented high removal efficiencies for MB (95.52%) and Cu(II) (100%) in low cationic pollutant concentration aqueous solutions. The biofoam adsorbent with 1 g of bamboo fiber (PUB1) also displayed excellent removal efficiency for MB (98.61%) at pH 11. Meanwhile, 100% removal of Cu(II) was obtained by PUB1 at pH 7 (initial content = 15 mg/L). Furthermore, the PUN1 sample had excellent reusability, evidenced by 61.25% removal of MB after five adsorption-desorption cycles, suggesting that PUN1 is a promising renewable adsorbent for cationic pollutants. In addition, PUB1 is a low-cost adsorbent with good adsorption efficiencies for MB in weak alkaline solutions and Cu(II) in neutral aqueous solutions.

6.
Int J Biol Macromol ; 119: 582-587, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30071222

RESUMO

In this study, diethyl ether extractives were isolated from Phoebe zhennan wood and then added into PLA matrix for the preparation of UV protective films (UV-PF). The results revealed that the diethyl ether extractives had good compatibility with PLA. The prepared UV-PF with the addition of 24 wt% extractives showed complete absorption of UV-C (200-280 nm) and UV-B (280-315 nm) and more than 90% absorption of UV-A (315-400 nm), indicating the addition of extractives into PLA contributed to the super UV resistant ability of the PLA based films. The UV-PF still exhibited excellent UV absorbability after strong UV light irradiation. The differential Scanning Calorimetry (DSC) analysis of the films showed that the UV-PF had relatively low thermal degradation temperature compared to the neat PLA films (PF), while the UV-PF showed stronger tensile strength with comparison to that of the PF. The results on the chemical composition analysis of the diethyl ether extractives revealed that the UV absorbability of the UV-PF may own to the benzene structure, CO bonds, CC bonds in the constituents of the extractives, which all have strong absorption in the near UV-region (200-400 nm).


Assuntos
Lauraceae/química , Extratos Vegetais/química , Poliésteres/química , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Raios Ultravioleta/efeitos adversos , Estabilidade de Medicamentos , Embalagem de Alimentos , Temperatura , Resistência à Tração
7.
Carbohydr Polym ; 151: 725-734, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27474619

RESUMO

Cellulose nanofibers were successfully isolated from bamboo using microwave liquefaction combined with chemical treatment and ultrasonic nanofibrillation processes. The microwave liquefaction could eliminate almost all the lignin in bamboo, resulting in high cellulose content residues within 7min, and the cellulose enriched residues could be readily purified by subsequent chemical treatments with lower chemical charging and quickly. The results of wet chemistry analyses, SEM images, and FTIR and X-ray spectra indicated the combination of microwave liquefaction and chemical treatment was significantly efficient in removing non-cellulosic compounds. Ultrasonication was used to separate the nanofibrils from the purified residues to extract nanofibers. The TEM images confirmed the presence of elementary fibrils, nano-sized fibril bundles, and aggregated fibril bundles. As evidenced by the TGA analysis, cellulose nanofibers isolated by this novel technique had high thermal stability indicating that the isolated nanofibers could possibly be applied as reinforcing elements in biomaterials.


Assuntos
Celulose/química , Micro-Ondas , Nanofibras/química , Poaceae/química , Sonicação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA