Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cancers (Basel) ; 15(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38001604

RESUMO

Many advances in antitumor therapies have been achieved with antagonistic antibodies targeting the programmed cell death protein 1 (PD-1) or its ligand (PD-L1); however, many cancer patients still develop resistance to anti-PD-1/PD-L1 treatments often associated with the upregulation of other immune checkpoints such as Lymphocyte Activation Gene-3 (LAG-3). In order to verify whether it is possible to overcome these limits, we analyzed and compared the effects of combinations of the clinically validated anti-LAG-3 mAb (Relatlimab) with anti-PD-1 (Pembrolizumab) or anti-PD-L1 (Atezolizumab) monoclonal antibodies (mAbs) with those of novel bispecific tribodies (TRs), called TR0304 and TR0506, previously generated in our lab by combining the binding moieties of novel human antibodies targeting the same ICs of the mentioned mAbs. In particular, TR0304, made up of a Fab derived from an anti-PD-L1 mAb and two single-chain variable fragments (scFvs) derived from an anti-LAG-3 mAb, was tested in comparison with Relatlimab plus Atezolizumab, and TR0506, made up of an antigen-binding fragment (Fab) derived from the same anti-LAG-3 mAb and two scFvs derived from an anti-PD-1 mAb, was tested in comparison with Relatlimab and Pembrolizumab. We found that the two novel TRs showed similar binding affinity to the targets with respect to validated mAbs, even though they recognized distinct or only partially overlapping epitopes. When tested for their functional properties, they showed an increased ability to induce lymphocyte activation and stronger in vitro cytotoxicity against tumor cells compared to combinatorial treatments of clinically validated mAbs. Considering that tribodies also have other advantages with respect to combinatorial treatments, such as reduced production costs and lower dose requirements, we think that these novel immunomodulatory TRs could be used for therapeutic applications, particularly in monotherapy-resistant cancer patients.

2.
iScience ; 26(10): 107668, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37720092

RESUMO

Gut microbiota plays a key role in modulating responses to cancer immunotherapy in melanoma patients. Oncolytic viruses (OVs) represent emerging tools in cancer therapy, inducing a potent immunogenic cancer cell death (ICD) and recruiting immune cells in tumors, poorly infiltrated by T cells. We investigated whether the antitumoral activity of oncolytic adenovirus Ad5D24-CpG (Ad-CpG) was gut microbiota-mediated in a syngeneic mouse model of melanoma and observed that ICD was weakened by vancomycin-mediated perturbation of gut microbiota. Ad-CpG efficacy was increased by oral supplementation with Bifidobacterium, reducing melanoma progression and tumor-infiltrating regulatory T cells. Fecal microbiota was enriched in bacterial species belonging to the Firmicutes phylum in mice treated with both Bifidobacterium and Ad-CpG; furthermore, our data suggest that molecular mimicry between melanoma and Bifidobacterium-derived epitopes may favor activation of cross-reactive T cells and constitutes one of the mechanisms by which gut microbiota modulates OVs response.

3.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373201

RESUMO

The recent pandemic years have prompted the scientific community to increasingly search for and adopt new and more efficient therapeutic and diagnostic approaches to deal with a new infection. In addition to the development of vaccines, which has played a leading role in fighting the pandemic, the development of monoclonal antibodies has also represented a valid approach in the prevention and treatment of many cases of CoronaVirus Disease 2019 (COVID-19). Recently, we reported the development of a human antibody, named D3, showing neutralizing activity against different SARS-CoV-2 variants, wild-type, UK, Delta and Gamma variants. Here, we have further characterized with different methods D3's ability to bind the Omicron-derived recombinant RBD by comparing it with the antibodies Cilgavimab and Tixagevimab, recently approved for prophylactic use of COVID-19. We demonstrate here that D3 binds to a distinct epitope from that recognized by Cilgavimab and shows a different binding kinetic behavior. Furthermore, we report that the ability of D3 to bind the recombinant Omicron RBD domain in vitro results in a good ability to also neutralize Omicron-pseudotyped virus infection in ACE2-expressing cell cultures. We point out here that D3 mAb maintains a good ability to recognize both the wild-type and Omicron Spike proteins, either when used as recombinant purified proteins or when expressed on pseudoviral particles despite the different variants, making it particularly useful both from a therapeutic and diagnostic point of view. On the basis of these results, we propose to exploit this mAb for combinatorial treatments with other neutralizing mAbs to increase their therapeutic efficacy and for diagnostic use to measure the viral load in biological samples in the current and future pandemic waves of coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes , Anticorpos Antivirais/uso terapêutico
5.
Cancers (Basel) ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358708

RESUMO

Antibody-based cancer immunotherapy includes monoclonals against immune checkpoints (ICs), to modulate specific T cell responses against cancer. NK cells are a newly emerging target for immune checkpoint receptor inhibition in cancer immunotherapy, as ICs are also expressed on NK cells in various cancers. The latter cells are becoming attractive targets for cancer immunotherapy, as they are effector cells similar to CTLs, exerting natural cytotoxicity against primary tumor cells and metastasis, and they are able to distinguish tumor cells from healthy ones, leading to more specific anti-tumor cytotoxicity and reduced off-target effects. Thus, we decided to test the effects on isolated NK cells and T cell subpopulations of novel immunomodulatory mAbs, recently generated in our lab, in comparison with those in clinical use, such as ipilimumab and atezolizumab. Interestingly, we found that the novel anti-CTLA-4 (ID-1) and anti-PD-L1 (PD-L1_1) antibodies are able to induce NK cell activation and exert anti-tumor effects on TNBC cells co-cultured with NK cells more efficiently than the clinically validated ones, either when used as single agents or in combinatorial treatments. On the other hand, ipilimumab was found to be more effective in activating T cells with respect to ID-1. These findings indicate that antibodies targeting different epitopes can have differential effects on different lymphocytes subpopulations and that novel combinations of mAbs could be suitable for therapeutic approaches aimed at activating not only T cells but also NK cells, especially for tumors lacking MHC.

6.
Front Cardiovasc Med ; 9: 930797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158826

RESUMO

Background: Immune checkpoint inhibitors (ICIs) have significantly changed the oncology clinic in recent years, improving survival expectations in cancer patients. ICI therapy have a broad spectrum of side effects from endocrinopathies to cardiovascular diseases. In this study, pro-inflammatory and pro-fibrotic effects of short-term ICIs therapy in preclinical models were analyzed. Methods: Firstly, in a human in vitro model, human cardiomyocytes co-cultured with hPBMC were exposed to ICIs (with CTLA-4 or PD-1 blocking agents, at 200 nM) for 72 h. After treatment, production of DAMPs and 12 cytokines were analyzed in the supernatant through colorimetric and enzymatic assays. C57/Bl6 mice were treated with CTLA-4 or PD-1 blocking agents (15 mg/kg) for 10 days. Before (T0), after three days (T3) and after treatments (T10), ejection fraction, fractional shortening, radial and longitudinal strain were calculated by using bidimensional echocardiography (Vevo 2100, Fujfilm). Fibrosis, necrosis, hypertrophy and vascular NF-kB expression were analyzed through Immunohistochemistry. Myocardial expression of DAMPs (S100- Calgranulin, Fibronectin and Galectine-3), MyD88, NLRP3 and twelve cytokines have been analyzed. Systemic levels of SDF-1, IL-1ß, and IL-6 were analyzed before, during and after ICIs therapy. Results: Radial and longitudinal strain were decreased after 10 days of ICIs therapy. Histological analysis of NF-kB expression shows that short-term anti-CTLA-4 or anti-PD-1 treatment increased vascular and myocardial inflammation. No myocardial hypertrophy was seen with the exception of the pembrolizumab group. Myocardial fibrosis and expression of galectin-3, pro-collagen 1-α and MMP-9 were increased after treatment with all ICIs. Both anti-CTLA-4 or anti-PD-1 treatments increased the expression of DAMPs, NLRP3 inflammasome and MyD88 and induced both in vitro and in vivo the secretion of IL-1ß, TNF-α and IL-6. Systemic levels of SDF-1, IL-1ß and IL-6 were increased during and after treatment with ICIs. Conclusions: Short therapy with PD-1 and CTLA-4 blocking agents increases vascular expression of NF-kB, systemic SDF-1, IL-1ß, IL-6 levels and myocardial NLRP3, MyD88 and DAMPs expression in preclinical models. A pro-inflammatory cytokine storm was induced in myocardial tissues and in cultured cardiac cells after ICIs therapy. The overall picture of the study suggests new putative biomarkers of ICIs-mediated systemic and myocardial damages potentially useful in clinical cardioncology.

7.
J Exp Clin Cancer Res ; 41(1): 269, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071464

RESUMO

BACKGROUND: Immunotherapy based on Bi-specific T Cell Engagers (TCE) represents one of the most attractive strategy to treat cancers resistant to conventional therapies. TCE are antibody-like proteins that simultaneously bind with one arm to a Tumor Associated Antigen (TAA) on cancer cells and with the other one to CD3 complex on a T-cell to form a TCR-independent immune synapse and circumvent Human Leucocyte Antigen restriction. Among them, the tribodies, such as Tb535H, a bi-specific molecule, made up of a Fab and a scFv domain both targeting 5T4 and another scFv targeting CD3, have demonstrated anti-tumor efficacy in preclinical studies. METHODS: Here, we generated five novel tri-specific and multi-functional tribodies, called 53X tribodies, composed of a 5T4 binding Fab arm and a CD3 binding scFv, but differently from the parental Tb535H, they contain an additional scFv derived from an antibody specific for an immune checkpoint, such as PD-1, PD-L1 or LAG-3. RESULTS: Compared with the parental Tb535H bi-specific T cell engager targeting 5T4, the novel 53X tribodies retained similar binding properties of Tb535H tribody, but showed enhanced anti-tumor potency due to the incorporation of the checkpoint inhibitory moiety. In particular, one of them, called 53L10, a tri-specific T cell engager targeting 5T4, CD3 and PD-L1, showed the most promising anti-tumor efficacy in vitro and led to complete tumor regression in vivo. CONCLUSIONS: The novel tribodies have the potential to become strong and safe therapeutic drugs, allowing to reduce also the cost of production as one single molecule contains three different specificities including the anti-TAA, anti-CD3 and anti-IC binding arms.


Assuntos
Antígeno B7-H1 , Neoplasias , Antígenos de Neoplasias , Humanos , Imunoterapia , Ativação Linfocitária , Neoplasias/tratamento farmacológico , Linfócitos T
8.
Front Oncol ; 12: 902190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669438

RESUMO

Oncolytic virotherapy is an emerging therapeutic approach based on replication-competent viruses able to selectively infect and destroy cancer cells, inducing the release of tumor-associated antigens and thereby recruiting immune cells with a subsequent increase in antitumoral immune response. To increase the anticancer activity, we engineered a specific oncolytic adenovirus expressing a single-chain variable fragment of an antibody against PD-L1 to combine blockage of PD-1/PD-L1 interaction with the antitumoral activity of Onc.Ad5. To assess its efficacy, we infected B16.OVA cells, a murine model of melanoma, with Ad5Δ24 -anti-PD-L1-scFv and then co-cultured them with C57BL/6J naïve splenocytes. We observed that the combinatorial treatments were significantly more effective in inducing cancer cell death. Furthermore, we assessed the efficacy of intratumoral administrations of Ad5Δ24-anti-PD-L1-scFv in C57BL/6J mice engrafted with B16.OVA and compared this treatment to that of the parental Ad5Δ24 or placebo. Treatment with the scFv-expressing Onc.Ad induced a marked reduction of tumor growth concerning the parental Onc.Ad. Additionally, the evaluation of the lymphocytic population infiltrating the treated tumor reveals a favorable immune profile with an enhancement of the CD8+ population. These data suggest that Onc.Ad-mediated expression of immune checkpoint inhibitors increases oncolytic virotherapy efficacy and could be an effective and promising tool for cancer treatments, opening a new way into cancer therapy.

9.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628365

RESUMO

The dramatic experience with SARS-CoV-2 has alerted the scientific community to be ready to face new epidemics/pandemics caused by new variants. Among the therapies against the pandemic SARS-CoV-2 virus, monoclonal Antibodies (mAbs) targeting the Spike glycoprotein have represented good drugs to interfere in the Spike/ Angiotensin Converting Enzyme-2 (ACE-2) interaction, preventing virus cell entry and subsequent infection, especially in patients with a defective immune system. We obtained, by an innovative phage display selection strategy, specific binders recognizing different epitopes of Spike. The novel human antibodies specifically bind to Spike-Receptor Binding Domain (RBD) in a nanomolar range and interfere in the interaction of Spike with the ACE-2 receptor. We report here that one of these mAbs, named D3, shows neutralizing activity for virus infection in cell cultures by different SARS-CoV-2 variants and retains the ability to recognize the Omicron-derived recombinant RBD differently from the antibodies Casirivimab or Imdevimab. Since anti-Spike mAbs, used individually, might be unable to block the virus cell entry especially in the case of resistant variants, we investigated the possibility to combine D3 with the antibody in clinical use Sotrovimab, and we found that they recognize distinct epitopes and show additive inhibitory effects on the interaction of Omicron-RBD with ACE-2 receptor. Thus, we propose to exploit these mAbs in combinatorial treatments to enhance their potential for both diagnostic and therapeutic applications in the current and future pandemic waves of coronavirus.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Humanos , Glicoproteína da Espícula de Coronavírus/química , Proteínas do Envelope Viral/química
10.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408827

RESUMO

Cancer immunotherapy has already shown significant improvements by combining different antibodies specific for distinct immune checkpoints, such as Ipilimumab and Nivolumab. Here, we tested combinatorial treatments of immunomodulatory antibodies, previously generated in our laboratory, for their effects on hPBMC activation, either upon stimulation with SEB or in co-cultures with tumor cells by cytokine secretion assays. We found that some of them showed additive or synergistic effects, and on the basis of these observations, we constructed, for the first time, four novel bispecific tribodies (TR), made up of a Fab derived from one anti-IC mAb and two scFvs derived from another mAb targeting a different IC. All four TRs cotargeting either programmed cell death protein 1 (PD-1) and Lymphocyte Activating 3 (LAG-3) or programmed death-ligand 1 (PD-L1) and LAG-3 retained binding affinity for their targets and the antagonistic effects of their parental mAbs, but some of them also showed an increased ability to induce lymphocyte activation and increased in vitro cytotoxicity against tumor cells compared to parental antibodies used either alone or in combinatorial treatments. Furthermore, none of the tribodies showed significant increased cytotoxicity on human cardiomyocytes. Considering that the tribody format reduces production costs (as only one construct provides the inhibitory effects of two antibodies), has an intermediate molecular size (100 kDa) which is well suited for both tumor penetration and an acceptable half-life, we think that these novel immunomodulatory TRBs have the potential to become precious tools for therapeutic applications, particularly in monotherapy-resistant cancer patients.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Humanos , Imunoterapia , Ativação Linfocitária , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linfócitos T
11.
Cancers (Basel) ; 14(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35267633

RESUMO

Monoclonal antibodies are among the most powerful therapeutics in modern medicine. Since the approval of the first therapeutic antibody in 1986, monoclonal antibodies keep holding great expectations for application in a range of clinical indications, highlighting the need to provide timely and sustainable access to powerful screening options. However, their application in the past has been limited by time-consuming and expensive steps of discovery and production. The screening of antibody repertoires is a laborious step; however, the implementation of next-generation sequencing-guided screening of single-chain antibody fragments has now largely overcome this issue. This review provides a detailed overview of the current strategies for the identification of monoclonal antibodies from phage display-based libraries. We also discuss the challenges and the possible solutions to improve the limiting selection and screening steps, in order to keep pace with the increasing demand for monoclonal antibodies.

12.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445266

RESUMO

The rare but dangerous adverse events evidenced after massive vaccination against SARS-CoV-2 are represented by thrombosis and thrombocytopenia. The patients diagnosed with severe COVID-19 may develop a pro-thrombotic state with a much higher frequency, thus we decided to investigate the role of Spike protein (the only common product of the two conditions) or the anti-Spike antibodies in the etiopathogenesis of thrombosis. A pathogenic Platelet Factor 4 (PF4)-dependent syndrome, unrelated to the use of heparin therapy, has been reported after the administration of vaccines in the patients manifesting acute thrombocytopenia and thrombosis. Thus, we aimed at shedding light on the structural similarities of Spike of SARS-CoV-2 and PF4 on their eventual biochemical interactions and on the role of their specific antibodies. The similarities between PF4 and Spike-RBD proteins were evaluated by a comparison of the structures and by testing the cross-reactivity of their specific antibodies by ELISA assays. We found that the anti-Spike antibodies do not recognize PF4, on the contrary, the anti-PF4 antibodies show some cross-reactivity for Spike-RBD. More interestingly, we report for the first time that the PF4 and Spike-RBD proteins can bind each other. These data suggest that the interaction of the two proteins could be involved in the generation of anti-PF4 antibodies, their binding to Spike-RBD, which could lead to platelets aggregation due also to their high expression of ACE2.


Assuntos
Vacinas contra COVID-19/efeitos adversos , COVID-19/imunologia , Fator Plaquetário 4 , Glicoproteína da Espícula de Coronavírus , Reações Cruzadas , Humanos , Fator Plaquetário 4/química , Fator Plaquetário 4/imunologia , Ligação Proteica , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Trombocitopenia/patologia , Trombose/patologia
13.
Sci Signal ; 14(690)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230209

RESUMO

Inorganic polyphosphates (polyPs) are linear polymers composed of repeated phosphate (PO4 3-) units linked together by multiple high-energy phosphoanhydride bonds. In addition to being a source of energy, polyPs have cytoprotective and antiviral activities. Here, we investigated the antiviral activities of long-chain polyPs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In molecular docking analyses, polyPs interacted with several conserved amino acid residues in angiotensin-converting enzyme 2 (ACE2), the host receptor that facilitates virus entry, and in viral RNA-dependent RNA polymerase (RdRp). ELISA and limited proteolysis assays using nano- LC-MS/MS mapped polyP120 binding to ACE2, and site-directed mutagenesis confirmed interactions between ACE2 and SARS-CoV-2 RdRp and identified the specific amino acid residues involved. PolyP120 enhanced the proteasomal degradation of both ACE2 and RdRp, thus impairing replication of the British B.1.1.7 SARS-CoV-2 variant. We thus tested polyPs for functional interactions with the virus in SARS-CoV-2-infected Vero E6 and Caco2 cells and in primary human nasal epithelial cells. Delivery of a nebulized form of polyP120 reduced the amounts of viral positive-sense genomic and subgenomic RNAs, of RNA transcripts encoding proinflammatory cytokines, and of viral structural proteins, thereby presenting SARS-CoV-2 infection in cells in vitro.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Polifosfatos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Administração por Inalação , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antivirais/administração & dosagem , Antivirais/química , COVID-19/metabolismo , COVID-19/virologia , Células CACO-2 , Chlorocebus aethiops , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Citocinas/metabolismo , Células HEK293 , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Técnicas In Vitro , Modelos Biológicos , Simulação de Acoplamento Molecular , Nebulizadores e Vaporizadores , Polifosfatos/administração & dosagem , Polifosfatos/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteólise/efeitos dos fármacos , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacos
14.
Cancers (Basel) ; 13(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201082

RESUMO

Antibodies targeting Immune Checkpoints (IC) on tumor infiltrating lymphocytes improve immune responses against cancer. Recently, the expression of some ICs has also been reported on cancer cells. We used the clinically validated Ipilimumab and Nivolumab and other novel human antibodies targeting Cytotoxic T- lymphocyte-antigen 4 (CTLA-4), Programmed Death receptor-1 (PD-1) and Programmed Death Ligand 1 (PD-L1) to shed light on the functions of these ICs in cancer cells. We show here for the first time that all these antagonistic mAbs are able to reduce Erk phosphorylation and, unexpectedly, to induce a significant increase of ICs expression on tumor cells, involving a hyperphosphorylation of NF-kB. On the contrary, agonistic PD-L1 and PD-1 recombinant proteins showed opposite effects by leading to a significant reduction of PD-1 and PD-L1, thus also suggesting the existence of a crosstalk in tumor cells between multiple ICs. Since the immunomodulatory mAbs show their higher anti-tumor efficacy by activating lymphocytes against cancer cells, we also investigated whether it was possible to identify the most efficient combinations of immunomodulatory mAbs for achieving potent anti-tumor efficacy associated with the lowest adverse side effects by setting up novel simple and predictive in vitro models based on co-cultures of tumor cells or human fetal cardiomyocytes with lymphocytes. We demonstrate here that novel combinations of immunomodulatory mAbs with more potent anti-cancer activity than Ipilimumab and Nivolumab combination can be identified with no or lower cardiotoxic side effects. Thus, we propose these co-cultures-based assays as useful tools to test also other combinatorial treatments of emerging immunomodulatory mAbs against different ICs for the early screening of most potent and safe combinatorial therapeutic regimens.

15.
Sci Rep ; 11(1): 11046, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040046

RESUMO

Among the therapies against the pandemic SARS-CoV-2 virus, monoclonal Antibodies (mAbs) targeting the Spike glycoprotein represent good candidates to interfere in the Spike/ACE2 interaction, preventing virus cell entry. Since anti-spike mAbs, used individually, might be unable to block the virus entry in the case of resistant mutations, we designed an innovative strategy for the isolation of multiple novel human scFvs specific for the binding domain (RBD) of Spike. By panning a large phage display antibody library on immobilized RBD, we obtained specific binders by eluting with ACE2 in order to identify those scFvs recognizing the epitope of Spike interacting with its receptor. We converted the novel scFvs into full size IgG4, differently from the previously isolated IgG1 mAbs, to avoid unwanted potential side effects of IgG1 potent effector functions on immune system. The novel antibodies specifically bind to RBD in a nanomolar range and interfere in the interaction of Spike with ACE2 receptor, either used as purified protein or when expressed on cells in its native conformation. Furthermore, some of them have neutralizing activity for virus infection in cell cultures by using two different SARS-CoV-2 isolates including the highly contagious VOC 202012/01 variant and could become useful therapeutic tools to fight against the SARS-CoV-2 virus.


Assuntos
Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , COVID-19/terapia , Imunoglobulina G/metabolismo , Imunoterapia/métodos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Células Cultivadas , Epitopos , Humanos , Imunoglobulina G/imunologia , Pandemias , Ligação Proteica , Domínios Proteicos/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
16.
Cancers (Basel) ; 14(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008285

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer characterized by a higher mortality rate among breast cancer subtypes. Poly(ADP-ribose) polymerase (PARP) inhibitors are used in clinics to treat a subgroup of TNBC patients, but other targeted therapies are urgently needed. Programmed death-ligand 1 (PD-L1), involved in tumor immune escape, was recently identified as a target for TNBC; accordingly, the anti-PD-L1 monoclonal antibody (mAb), atezolizumab, has been approved by FDA in combination with Paclitaxel for the therapy of metastatic TNBC. Here, we tested novel combinations of fully human immunomodulatory mAbs, including anti-PD-L1 mAbs generated in our laboratory and atezolizumab, on TNBC and other tumor cell lines. We evaluated their anti-tumor efficacy when used as single agents or in combinatorial treatments with anti-CTLA-4 mAbs in in vitro co-cultures of hPBMCs with tumor cells, by measuring tumor cell lysis and IL-2 and IFNγ cytokines secretion by lymphocytes. In parallel, by using co-cultures of hPBMCs and cardiomyocytes, we analyzed the potential cardiotoxic adverse side effects of the same antibody treatments by measuring the cardiac cell lysis and the secretion of pro-inflammatory cytokines. We identified novel combinations of immunomodulatory mAbs endowed with more potent anti-cancer activity on TNBC and lower cardiotoxic side effects than the combination of atezolizumab and ipilimumab.

17.
J Pers Med ; 10(4)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086484

RESUMO

BACKGROUND: Several strategies based on immune checkpoint inhibitors (ICIs) have been developed for cancer therapy, opening to advantages in cancer outcomes. However, several ICI-induced side effects have emerged in these patients, especially a rare but clinically significant cardiotoxicity with high rate of mortality. We studied the cytotoxic and pro-inflammatory properties of Ipilimumab and Nivolumab, the underlying pathways and cytokine storm involved. METHODS: Co-cultures of human cardiomyocytes and lymphocytes were exposed to Ipilimumab or Nivolumab; cell viability and expression of leukotrienes, NLRP3, MyD88, and p65/NF-kB were performed. C57 mice were treated with Ipilimumab (15 mg/kg); analysis of fractional shortening, ejection fraction, radial and longitudinal strain were made before and after treatments through 2D-echocardiography. Expression of NLRP3, MyD88, p65/NF-kB, and 12 cytokines were analyzed in murine myocardium. RESULTS: Nivolumab and Ipilimumab exert effective anticancer, but also significant cardiotoxic effects in co-cultures of lymphocytes and tumor or cardiac cells. Both ICIs increased NLRP3, MyD88, and p65/NF-kB expression compared to untreated cells, however, the most pro-inflammatory and cardiotoxic effects were seen after exposure to Ipilimumab. Mice treated with Ipilimumab showed a significant decrease in fractional shortening and radial strain with respect to untreated mice, coupled with a significant increase in myocardial expression of NLRP3, MyD88, and several interleukins. CONCLUSIONS: Nivolumab and Ipilimumab exert cytotoxic effects mediated by the NLRP3/IL-1ß and MyD88 pathways, leading to pro-inflammatory cytokine storm in heart tissue.

18.
J Exp Clin Cancer Res ; 39(1): 180, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32892748

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a uniquely aggressive cancer with high rates of relapse due to resistance to chemotherapy. TNBC expresses higher levels of programmed cell death-ligand 1 (PD-L1) compared to other breast cancers, providing the rationale for the recently approved immunotherapy with anti-PD-L1 monoclonal antibodies (mAbs). A huge effort is dedicated to identify actionable biomarkers allowing for combination therapies with immune-checkpoint blockade. Platelet-derived growth factor receptor ß (PDGFRß) is highly expressed in invasive TNBC, both on tumor cells and tumor microenvironment. We recently proved that tumor growth and lung metastases are impaired in mouse models of human TNBC by a high efficacious PDGFRß aptamer. Hence, we aimed at investigating the effectiveness of a novel combination treatment with the PDGFRß aptamer and anti-PD-L1 mAbs in TNBC. METHODS: The targeting ability of the anti-human PDGFRß aptamer toward the murine receptor was verified by streptavidin-biotin assays and confocal microscopy, and its inhibitory function by transwell migration assays. The anti-proliferative effects of the PDGFRß aptamer/anti-PD-L1 mAbs combination was assessed in human MDA-MB-231 and murine 4 T1 TNBC cells, both grown as monolayer or co-cultured with lymphocytes. Tumor cell lysis and cytokines secretion by lymphocytes were analyzed by LDH quantification and ELISA, respectively. Orthotopic 4 T1 xenografts in syngeneic mice were used for dissecting the effect of aptamer/mAb combination on tumor growth, metastasis and lymphocytes infiltration. Ex vivo analyses through immunohistochemistry, RT-qPCR and immunoblotting were performed. RESULTS: We show that the PDGFRß aptamer potentiates the anti-proliferative activity of anti-PD-L1 mAbs on both human and murine TNBC cells, according to its human/mouse cross-reactivity. Further, by binding to activated human and mouse lymphocytes, the aptamer enhances the anti-PD-L1 mAb-induced cytotoxicity of lymphocytes against tumor cells. Importantly, the aptamer heightens the antibody efficacy in inhibiting tumor growth and lung metastases in mice. It acts on both tumor cells, inhibiting Akt and ERK1/2 signaling pathways, and immune populations, increasing intratumoral CD8 + T cells and reducing FOXP3 + Treg cells. CONCLUSION: Co-treatment of PDGFRß aptamer with anti-PD-L1 mAbs is a viable strategy, thus providing for the first time an evidence of the efficacy of PDGFRß/PD-L1 co-targeting combination therapy in TNBC.


Assuntos
Aptâmeros de Nucleotídeos/genética , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Terapia de Alvo Molecular , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose , Aptâmeros de Nucleotídeos/administração & dosagem , Proliferação de Células , Quimioterapia Combinada , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancers (Basel) ; 12(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781690

RESUMO

The cytotoxic T lymphocyte-antigen 4 (CTLA-4) has been considered an IC exclusively expressed on T cells, where it counteracts the co-stimulatory CD28 receptor, by competing for its binding to CD-80 and CD-86. We recently found that it is expressed also on tumor and NK cells, suggesting other possible unknown roles of CTLA-4. To shed light on these novel aspects of CTLA-4, we used Ipilimumab, the first FDA approved human antibody targeting CTLA-4, in parallel studies with two novel human mAbs we isolated by using an efficient phage display selection strategy on live activated lymphocytes and purified mouse and human CTLA-4. The selection for cross-reactive mAbs was guaranteed by a high throughput sequencing to identify the sequences commonly enriched by two parallel pannings on human and mouse CTLA-4. Two isolated antibodies were found to bind with high affinity to both human and mouse CTLA-4 and lymphocytes, showing nanomolar or sub-nanomolar Kd values. They were able to kill Treg cells by ADCC, and to activate both human and mouse PBMCs, by strongly increasing cytokines secretion. Interestingly, they activated NK cells, exhibited cytotoxicity against cancer cells by inducing ADCC and inhibited tumor cell growth by affecting CTLA-4 downstream pathways in a similar fashion to CD-80 and CD-86 ligands and differently from Ipilimumab. Moreover, the novel mAbs showed a reduced ability to interfere in the binding of CD-80 ligands to CTLA-4 on T cells with respect to Ipilimumab, suggesting that they could allow for anti-tumor effects without the irAEs associated with the potent antagonistic activity of Ipilimumab.

20.
Cancers (Basel) ; 12(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024070

RESUMO

The immune checkpoint CTLA-4 (cytotoxic T-lymphocyte-antigen 4), which inhibits the co-stimulatory CD28 signal on T cells, has been recently found expressed on other cell populations, such as tumor and natural killer (NK) cells. We tested for the first time the effects of ipilimumab, the human anti-CTLA4 mAb in clinical use, on these cells and found that it inhibits the growth of tumor cells expressing CTLA-4 also in the absence of lymphocytes, and efficiently activates NK cells, thus suggesting an important unexplored role of NK cells in ipilimumab-modulated immune responses. Interestingly, the epidermal growth factor receptor (EGFR) has been shown to play a key role in tumor cell escape from immune surveillance, and in cytotoxic T lymphocyte inhibition. Thus, we tested combinatorial treatments of ipilimumab with an anti-EGFR aptamer endowed with anti-tumor activity, and constructed for the first time a novel bispecific immunoconjugate, made up of these two compounds. The novel immunoconjugate binds to the target cells, induces the activation of lymphocytes, including NK cells, and inhibits the growth of tumor target cells more efficiently than the parental compounds, by strongly enhancing the cytotoxic activity of both human peripheral blood mononuclear cells and NK cells against tumor cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA