Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745313

RESUMO

Acute kidney injury (AKI) is an important contributor to the development of chronic kidney disease (CKD). There is a need to understand molecular mediators that drive either recovery or progression to CKD. In particular, the role of miRNA and its regulatory role in AKI is poorly understood. We performed miRNA and mRNA sequencing on biobanked human kidney tissues obtained in the routine clinical care of patients with the diagnoses of AKI and minimal change disease (MCD), in addition to nephrectomized (Ref) tissue from individuals without known kidney disease. Transcriptomic analysis of mRNA revealed that Ref tissues exhibited a similar injury signature to AKI, not identified in MCD samples. The transcriptomic signature of human AKI was enriched with genes in pathways involved in cell adhesion and epithelial-to-mesenchymal transition (e.g., CDH6, ITGB6, CDKN1A ). miRNA DE analysis revealed upregulation of miRNA associated with immune cell recruitment and inflammation (e.g., miR-146a, miR-155, miR-142, miR-122). These miRNA (i.e., miR-122, miR-146) are also associated with downregulation of mRNA such as DDR2 and IGFBP6 , respectively. These findings suggest integrated interactions between miRNAs and target mRNAs in AKI-related processes such as inflammation, immune cell activation and epithelial-to-mesenchymal transition. These data contribute several novel findings when describing the epigenetic regulation of AKI by miRNA, and also underscores the importance of utilizing an appropriate reference control tissue to understand canonical pathway alterations in AKI.

2.
Pharm Res ; 38(10): 1677-1695, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34671921

RESUMO

PURPOSE: We developed an accessible method for labeling small extracellular vesicles (sEVs) without disrupting endogenous ligands. Using labeled sEVs administered to conscious rats, we developed a multiple compartment pharmacokinetic model to identify potential differences in the disposition of sEVs from three different cell types. METHODS: Crude sEVs were labeled with a non-homologous oligonucleotide and isolated from cell culture media using a commercial reagent. Jugular vein catheters were used to introduce EVs to conscious rats (n = 30) and to collect blood samples. Digital PCR was leveraged to allow for quantification over a wide dynamic range. Non-linear mixed effects analysis with first order conditional estimation - extended least squares (FOCE ELS) was used to estimate population-level parameters with associated intra-animal variability. RESULTS: 86.5% ± 1.5% (mean ± S.E.) of EV particles were in the 45-195 nm size range and demonstrated protein and lipid markers of endosomal origin. Incorporated oligonucleotide was stable in blood and detectable over five half-lives. Data were best described by a three-compartment model with one elimination from the central compartment. We performed an observation-based simulated posterior predictive evaluation with prediction-corrected visual predictive check. Covariate and bootstrap analyses identified cell type having an influence on peripheral volumes (V2 and V3) and clearance (Cl3). CONCLUSIONS: Our method relies upon established laboratory techniques, can be tailored to a variety of biological questions regarding the pharmacokinetic disposition of extracellular vesicles, and will provide a complementary approach for the of study EV ligand-receptor interactions in the context of EV uptake and targeted therapeutics.


Assuntos
Vesículas Extracelulares/metabolismo , Nanopartículas/metabolismo , Oligonucleotídeos/farmacocinética , Animais , Sequência de Bases , Transporte Biológico , Caenorhabditis elegans/genética , Humanos , Ligantes , Lipídeos/química , Masculino , MicroRNAs , Modelos Biológicos , Oligonucleotídeos/metabolismo , Ratos Sprague-Dawley , Imagem Individual de Molécula
3.
J Mass Spectrom ; 56(1): e4681, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33210411

RESUMO

Extracellular vesicles (EVs) convey information used in cell-to-cell interactions. Lipid analysis of EVs remains challenging because of small sample amounts available. Lipid discovery using traditional mass spectrometry platforms based on liquid chromatography and high mass resolution typically employs milligram sample amounts. We report a simple workflow for lipid profiling of EVs based on multiple reaction monitoring (MRM) profiling that uses microgram amounts of sample. After liquid-liquid extraction, individual EV samples were injected directly into the electrospray ionization (ESI) ion source at low flow rates (10 µl/min) and screened for 197 MRM transitions chosen to be a characteristic of several classes of lipids. This choice was based on a discovery experiment, which applied 1,419 MRMs associated with multiple lipid classes to a representative pooled sample. EVs isolated from 12 samples of human lymphocytes and 16 replicates from six different rat cells lines contained an estimated amount of total lipids of 326 to 805 µg. Samples showed profiles that included phosphatidylcholine (PC), sphingomyelin (SM), cholesteryl ester (CE), and ceramide (Cer) lipids, as well as acylcarnitines. The lipid profiles of human lymphocyte EVs were distinguishable using principal component and cluster analysis in terms of prior antibody and drug exposure. Lipid profiles of rat cell lines EV's were distinguishable by their tissue of origin.


Assuntos
Vesículas Extracelulares/química , Lipídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Lipídeos/química , Extração Líquido-Líquido , Linfócitos/química , Linfócitos/citologia , Análise de Componente Principal , Ratos
5.
J Am Assoc Lab Anim Sci ; 57(5): 520-528, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30075826

RESUMO

Preclinical studies in animals often require frequent blood sampling over prolonged periods. A preferred method in rats is the implantation of a polyurethane catheter into the jugular vein, with heparinized glycerol as a lock solution. However, analysis of various biologic compounds (for example, microRNA) precludes the use of heparin. We used sodium citrate as an alternative to heparin but observed more frequent loss of catheter patency. We hypothesized that this effect was due to evaporation of lock solution at the exteriorized portion of the catheter, subsequent blood infiltration into the catheter, and ultimately clot formation within the catheter. We therefore tested evaporation and its variables in vitro by using 5 common catheter materials. We used the migration of dye into vertically anchored catheters as a measure of lock displacement due to evaporation. Exposure to dry room-temperature air was sufficient to cause dye migration against gravity, whereas a humid environment and adding glycerol to the lock solution mitigated this effect, thus confirming loss of the lock solution from the catheter by evaporation. We tested 4 catheter treatments for the ability to reduce lock evaporation. Results were validated in vivo by using male Sprague-Dawley rats (n = 12) implanted with polyurethane jugular vein catheters and randomized to receive a nitrocellulose-based coating on the exteriorized portion of the catheter. Coating the catheters significantly improved patency, as indicated by a Kaplan-Meier log-rank hazard ratio greater than 5 in untreated catheters. We here demonstrate that a simple nitrocellulose coating reduces evaporation from and thus prolongs the patency of polyurethane catheters in rats.


Assuntos
Anti-Infecciosos Locais/farmacologia , Infecções Relacionadas a Cateter/prevenção & controle , Cateterismo Venoso Central/veterinária , Colódio/farmacologia , Veias Jugulares , Animais , Cateterismo Venoso Central/instrumentação , Catéteres , Heparina , Ciência dos Animais de Laboratório , Ratos , Ratos Sprague-Dawley , Citrato de Sódio
6.
J Drug Deliv ; 2017: 4070793, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29410918

RESUMO

siRNA stabilized for in vivo applications is filtered and reabsorbed in the renal proximal tubule (PT), reducing mRNA expression transiently. Prior siRNA efforts have successfully prevented upregulation of mRNA in response to injury. We proposed reducing constitutive gene and protein expression of LRP2 (megalin) in order to understand its molecular regulation in mice. Using siRNA targeting mouse LRP2 (siLRP2), reduction of LRP2 mRNA expression was compared to scrambled siRNA (siSCR) in mouse PT cells. Mice received siLRP2 administration optimized for dose, administration site, carrier solution, administration frequency, and administration duration. Kidney cortex was collected upon sacrifice. Renal gene and protein expression were compared by qRT-PCR, immunoblot, and immunohistochemistry (IHC). Compared to siSCR, siLRP2 reduced mRNA expression in PT cells to 16.6% ± 0.6%. In mouse kidney cortex, siLRP2 reduced mRNA expression to 74.8 ± 6.3% 3 h and 70.1 ± 6.3% 6 h after administration. mRNA expression rebounded at 12 h (160.6 ± 11.2%). No megalin renal protein expression reduction was observed by immunoblot or IHC, even after serial twice daily dosing for 3.5 days. Megalin is a constitutively expressed protein. Although LRP2 renal mRNA expression reduction was achieved, siRNA remains a costly and inefficient intervention to reduce in vivo megalin protein expression.

7.
Mol Biol Cell ; 25(4): 441-56, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24356446

RESUMO

Cdh1, a coactivator of the anaphase-promoting complex (APC), is a potential tumor suppressor. Cdh1 ablation promotes precocious S-phase entry, but it was unclear how this affects DNA replication dynamics while contributing to genomic instability and tumorigenesis. We find that Cdh1 depletion causes early S-phase onset in conjunction with increase in Rb/E2F1-mediated cyclin E1 expression, but reduced levels of cyclin E1 protein promote this transition. We hypothesize that this is due to a weakened cyclin-dependent kinase inhibitor (CKI)-cyclin-dependent kinase 2 positive-feedback loop, normally generated by APC-Cdh1-mediated proteolysis of Skp2. Indeed, Cdh1 depletion increases Skp2 abundance while diminishing levels of the CKI p27. This lowers the level of cyclin E1 needed for S-phase entry and delays cyclin E1 proteolysis during S-phase progression while corresponding to slowed replication fork movement and reduced frequency of termination events. In summary, using both experimental and computational approaches, we show that APC-Cdh1 establishes a stimulus-response relationship that promotes S phase by ensuring that proper levels of p27 accumulate during G1 phase, and defects in its activation accelerate the timing of S-phase onset while prolonging its progression.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/genética , Caderinas/genética , Transformação Celular Neoplásica/genética , Retroalimentação Fisiológica , Fase S , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antígenos CD , Caderinas/antagonistas & inibidores , Caderinas/metabolismo , Transformação Celular Neoplásica/patologia , Ciclina E/genética , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Replicação do DNA , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fase G1 , Regulação da Expressão Gênica , Células HeLa , Humanos , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais , Fatores de Tempo
8.
Biochim Biophys Acta ; 1810(8): 784-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21571040

RESUMO

BACKGROUND: Constituents and inhibitors of intermediary metabolism resulting in alterations in levels of cytosolic NADH, stimulation of sphingomyelinase and inhibition of sphingosine kinase were evaluated for effects on growth inhibition and induction of apoptosis by the ENOX2 inhibitors EGCG, the principal catechin of green tea, and phenoxodiol, a naturally occurring isoflavone. METHODS: Responses were evaluated from dose-response curves of the metabolites and metabolic inhibitors in which growth of HeLa cells, apoptosis based on DAPI fluorescence and cytosolic NADH levels were correlated with sphingomyelinase and spingosine kinase activities and levels of ceramide and sphingosine1-phosphate. RESULTS: Growth inhibition correlated with the modulation of localized cytosolic NADH levels by metabolites and metabolic inhibitors, the response of sphingomyelinase and sphingosine kinase located near the inner surface of the plasma membrane, and apoptosis. CONCLUSIONS: Based on findings with metabolites, we conclude that apoptosis in cancer cell lines caused by ENOX2 inhibitors such as EGCG and phenoxodiol is a direct response to elevated levels of cytosolic NADH that result from ENOX2 inhibition. GENERAL SIGNIFICANCE: The findings help to explain why increased NADH levels resulting from ENOX2 inhibition result in decreased prosurvival sphingosine-1-phosphate and increased proapoptotic ceramide, both of which may be important to initiation of the ENOX2 inhibitor-induced apoptotic cascade.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Isoflavonas/farmacologia , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo , Anticarcinógenos/farmacologia , Catequina/farmacologia , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Lisofosfolipídeos/metabolismo , NADP/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
9.
J Cell Biochem ; 110(6): 1504-11, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20518072

RESUMO

ENOX2 (tNOX), a tumor-associated cell surface ubiquinol (NADH) oxidase, functions as an alternative terminal oxidase for plasma membrane electron transport. Ubiquitous in all cancer cell lines studied thus far, ENOX2 expression correlates with the abnormal growth and division associated with the malignant phenotype. ENOX2 has been proposed as the cellular target for various quinone site inhibitors that demonstrate anticancer activity such as the green tea constituent epigallocatechin-3-gallate (EGCg) and the isoflavone phenoxodiol (PXD). Here we present a possible mechanism that explains how these substances result in apoptosis in cancer cells by ENOX2-mediated alterations of cytosolic amounts of NAD(+) and NADH. When ENOX2 is inhibited, plasma membrane electron transport is diminished, and cytosolic NADH accumulates. We show in HeLa cells that NADH levels modulate the activities of two pivotal enzymes of sphingolipid metabolism: sphingosine kinase 1 (SK1) and neutral sphingomyelinase (nSMase). Their respective products sphingosine 1-phosphate (S1P) and ceramide (Cer) are key determinants of cell fate. S1P promotes cell survival and Cer promotes apoptosis. Using plasma membranes isolated from cervical adenocarcinoma (HeLa) cells as well as purified proteins of both bacterial and human origin, we demonstrate that NADH inhibits SK1 and stimulates nSMase, while NAD(+) inhibits nSMase and has no effect on SK1. Additionally, intact HeLa cells treated with ENOX2 inhibitors exhibit an increase in Cer and a decrease in S1P. Treatments that stimulate cytosolic NADH production potentiate the antiproliferative effects of ENOX2 inhibitors while those that attenuate NADH production or stimulate plasma membrane electron transport confer a survival advantage.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Isoflavonas/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , NAD/metabolismo , Anticarcinógenos/farmacologia , Catequina/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/metabolismo , Cromatografia em Camada Fina , Citosol/efeitos dos fármacos , Citosol/metabolismo , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Lisofosfolipídeos/metabolismo , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
10.
Biofactors ; 34(3): 253-60, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19734127

RESUMO

Phenoxodiol, an ENOX2 inhibitor, alters cytosolic NADH levels to initiate a regulatory cascade linking sphingolipid metabolism and the PI3K/Akt pathway to programmed cell death. Specifically, the pyridine nucleotide products of plasma membrane redox, NAD+ and NADH, directly modulate in a recriprocal manner two key plasma membrane enzymes. NADH stimulation of sphingomyelinase and NADH inhibition of sphingosine kinase potentially lead to G1 arrest (increase in ceramide) and apoptosis (loss of sphingosine-1-phosphate). The findings link plasma membrane electron transport and the anticancer action of several clinically-relevant anticancer agents targeted to ENOX2 such as phenoxodiol. Growth inhibition by phenoxodiol is unaffected by inhibitors of protein or mRNA synthesis. Findings with okadiaic acid, an inhibitor of serine/threonine phosphatases, suggest that hyperphosphorylation of intracellular substrates does not affect the action of phenoxodiol on ENOX2. Our findings and those of others are consistent with operation of the FAS signaling pathway of apoptosis and its suppression by sphingosine-1-phosphate. The prevailing hypothesis is that products of Akt activation, c-FLIP and XIAP, which exhibit anticaspase activities to block FAS signaling when sphingosine-1-phospate is elevated, are down regulated to permit apoptosis when sphingosine-1-phosphate is decreased by inhibition of sphingosine kinase under conditions of elevated cytosolic NADH associated with anticancer drug inhibition of ENOX2.


Assuntos
Inibidores Enzimáticos/farmacologia , Isoflavonas/farmacologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Esfingolipídeos/metabolismo , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/metabolismo , Células HeLa , Humanos , Lisofosfolipídeos/metabolismo , Modelos Biológicos , Ácido Okadáico/farmacologia , Fosfoproteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo
11.
Biofactors ; 25(1-4): 43-60, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16873929

RESUMO

To elucidate possible biochemical links between growth arrest from antiproliferative chemotherapeutic agents and apoptosis, our work has focused on agents (EGCg, capsaicin, cis platinum, adriamycin, anti-tumor sulfonylureas, phenoxodiol) that target tNOX. tNOX is a cancer-specific cell surface NADH oxidase (ECTO-NOX protein), that functions in cancer cells as the terminal oxidase for plasma membrane electron transport. When tNOX is active, coenzyme Q(10) (ubiquinone) of the plasma membrane is oxidized and NADH is oxidized at the cytosolic surface of the plasma membrane. However, when tNOX is inhibited and plasma membrane electron transport is diminished, both reduced coenzyme Q(10) (ubiquinol) and NADH would be expected to accumulate. To relate inhibition of plasma membrane redox to increased ceramide levels and arrest of cell proliferation in G(1) and apoptosis, we show that neutral sphingomyelinase, a major contributor to plasma membrane ceramide, is inhibited by reduced glutathione and ubiquinone. Ubiquinol is without effect or stimulates. In contrast, sphingosine kinase, which generates anti-apoptotic sphingosine-1-phosphate, is stimulated by ubiquinone but inhibited by ubiquinol and NADH. Thus, the quinone and pyridine nucleotide products of plasma membrane redox, ubiquinone and ubiquinol, as well as NAD(+) and NADH, may directly modulate in a reciprocal manner two key plasma membrane enzymes, sphingomyelinase and sphingosine kinase, potentially leading to G(1) arrest (increase in ceramide) and apoptosis (loss of sphingosine-1-phosphate). As such, the findings provide potential links between coenzyme Q(10)-mediated plasma membrane electron transport and the anticancer action of several clinically-relevant anticancer agents.


Assuntos
Alquil e Aril Transferases/fisiologia , Apoptose/efeitos dos fármacos , Membrana Celular/metabolismo , Ceramidas/metabolismo , Transporte de Elétrons/fisiologia , Fase G1/efeitos dos fármacos , Lisofosfolipídeos/metabolismo , NADH NADPH Oxirredutases/antagonistas & inibidores , NAD/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingosina/análogos & derivados , Ubiquinona/fisiologia , Células HeLa , Humanos , Isoflavonas/farmacologia , NADH NADPH Oxirredutases/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA