RESUMO
The orbital angular momentum of photons, being defined in an infinite-dimensional discrete Hilbert space, offers a promising resource for high-dimensional quantum information protocols in quantum optics. The biggest obstacle to its wider use is presently represented by the limited set of tools available for its control and manipulation. Here, we introduce and test experimentally a series of simple optical schemes for the coherent transfer of quantum information from the polarization to the orbital angular momentum of single photons and vice versa. All our schemes exploit a newly developed optical device, the so-called "q-plate", which enables the manipulation of the photon orbital angular momentum driven by the polarization degree of freedom. By stacking several q-plates in a suitable sequence, one can also have access to higher-order angular momentum subspaces. In particular, we demonstrate the control of the orbital angular momentum m degree of freedom within the subspaces of |m| = 2h and |m| = 4h per photon.
RESUMO
We report the first experimental realization of an "optimal" quantum device able to perform a minimal disturbance measurement on polarization encoded qubits saturating the theoretical boundary established between the classical knowledge acquired of any input state, i.e., a "classical guess," and the fidelity of the same state after disturbance due to measurement. The device has been physically realized by means of a linear optical qubit manipulation, postselection measurement, and a classical feed-forward process.
RESUMO
We report the experimental realization and the characterization of polarization and momentum hyperentangled two-photon states, generated by a new parametric source of correlated photon pairs. By adoption of these states an "all-versus-nothing" test of quantum mechanics was performed. The two-photon hyperentangled states are expected to find at an increasing rate a widespread application in state engineering and quantum information.
RESUMO
An application of quantum cloning to optimally interface a quantum system with a classical observer is presented; in particular, we describe a procedure to perform a minimal disturbance measurement on a single qubit by adopting a 1-->2 cloning machine followed by a generalized measurement on a single clone and the anticlone or on the two clones. Such a scheme can be applied to enhance the transmission fidelity over a lossy quantum channel.
RESUMO
We report the experimental realization of the purification protocol for single qubits sent through a depolarizing channel. The qubits are associated with polarization states of single photons and the protocol is achieved by means of passive linear optical elements. The present approach may represent a convenient alternative to the distillation and error correction protocols of quantum information.
RESUMO
We present a novel technique for generating two-photon polarization mixed states of any structure, which is based on the peculiar spatial characteristics of a high brilliance source of entangled pairs. Werner states and maximally entangled mixed states, two well-known families of mixed states important for quantum information, have been created and fully characterized by this technique. We have also investigated and tested the nonlocal properties of these states.
RESUMO
By a significant modification of the standard protocol of quantum state teleportation, two processes "forbidden" by quantum mechanics in their exact form, the universal NOT gate and the universal optimal quantum cloning machine, have been implemented contextually and optimally by a fully linear method. In particular, the first experimental demonstration of the tele-UNOT gate, a novel quantum information protocol, has been reported. The experimental results are found in full agreement with theory.
RESUMO
We report on the first experimental realization of an entanglement witness, a method to detect entanglement with few local measurements. The present demonstration has been performed with polarized photons in Werner states, a well-known family of mixed states that can be either separable or nonseparable. The Werner states are generated by a novel high brilliance source of bipartite entangled states by which the state mixedness can be easily adjusted.
RESUMO
A novel Mach-Zehnder interferometer terminated at two different frequencies realizes in a quantum regime the nonlinear frequency conversion of optical quantum superposition states. The information-preserving character of the relevant unitary transformation has been experimentally demonstrated for input qubits and ebits. Besides its own intrinsic fundamental interest, the new scheme is expected to find important applications in modern quantum information technology.
RESUMO
In classical computation, a 'bit' of information can be flipped (that is, changed in value from zero to one and vice versa) using a logical NOT gate; but the quantum analogue of this process is much more complicated. A quantum bit (qubit) can exist simultaneously in a superposition of two logical states with complex amplitudes, and it is impossible to find a universal transformation that would flip the original superposed state into a perpendicular state for all values of the amplitudes. But although perfect flipping of a qubit prepared in an arbitrary state (a universal NOT operation) is prohibited by the rules of quantum mechanics, there exists an optimal approximation to this procedure. Here we report the experimental realization of a universal quantum machine that performs the best possible approximation to the universal NOT transformation. The system adopted was an optical parametric amplifier of entangled photon states, which also enabled us to investigate universal quantum cloning.
RESUMO
We report the creation of an entangled multiphoton quantum superposition by quantum injection of entangled 2-photon states into a parity selective parametric amplifier. The information preserving property of the state transformation suggests for these macrostates the name of large qubits. They are ideal objects for investigating the emergence of the classical world in complex quantum systems and have relevant new applications in quantum information.
RESUMO
We propose an experimental scheme for the cloning machine of continuous quantum variables through a network of parametric amplifiers working as input-output four-port gates.
RESUMO
We report the realization of the spatial counterpart of the Dicke superradiance. The new process is revealed by the realization of the spatial quantum partition statistics within the detection of photons emitted in sub-Poissonian regime by an active microcavity excited by ultrashort pulses. The superradiant enhancement of the time decay of the dipole excitation has also been investigated.
RESUMO
We have investigated the temporal dynamics of the output polarization of a dye microlaser operating in a transient regime, i.e., under femtosecond excitation. In these conditions the dipole angular diffusion has an important role in the formation of the microlaser pulse, as is shown in a theoretical model. By performing the experiment for different values of the microcavity length and varying the polarization angle, we measured threshold and buildup time of the microlaser and compared the results obtained with two dye solutions of different viscosity. The agreement between theory and experimental results is adequate.
RESUMO
The concept of transverse coherence length in an active microscopic cavity is investigated with regard to the threshold of the microlaser action. This physical parameter is related to the linear spatial extent, or the effective radius, of the transverse lasing mode operating in a plane Fabry-Perot microcavity. This problem is analyzed by means of a full semiclassical theory, by which the microlaser threshold is expressed as a function of the relevant parameters of the thresholdless microlaser and of the extension of the active pumped zone. Experimental results are in satisfactory agreement with the theoretical predictions.