Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37895552

RESUMO

Biophotons are an ultra-weak emission of photons in the visible energy range from living matter. In this work, we study the emission from germinating seeds using an experimental technique designed to detect light of extremely small intensity. The emission from lentil seeds and single bean was analyzed during the whole germination process in terms of the different spectral components through low pass filters and the different count distributions in the various stages of the germination process. Although the shape of the emission spectrum appears to be very similar in the two samples used in our experiment, our analysis can highlight the differences present in the two cases. In this way, it was possible to correlate the various types of emissions to the degree of development of the seed during germination.

2.
Gels ; 9(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36826304

RESUMO

Poly(ethylene glycol) diacrylate (PEGDA) hydrogels modified with luminescent silver nanoclusters (AgNCs) are synthesized by a photo-crosslinking process. The hybrid material thus obtained is employed to filter Pb(II) polluted water. Under the best conditions, the nanocomposite is able to remove up to 80-90% of lead contaminant, depending on the filter composition. The experimental results indicate that the adsorption process of Pb(II) onto the modified filter can be well modeled using the Freundlich isotherm, thus revealing that the chemisorption is the driving process of Pb(II) adsorption. In addition, the parameter n in the Freundlich model suggests that the adsorption process of Pb(II) ions in the modified hydrogel is favored. Based on the obtained remarkable contaminant uptake capacity and the overall low cost, this hybrid system appears to be a promising sorbent material for the removal of Pb(II) ions from aqueous media.

3.
Sci Rep ; 13(1): 2863, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36804588

RESUMO

Electrically conductive scaffolds, mimicking the unique directional alignment of muscle fibers in the myocardium, are fabricated using the 3D printing micro-stereolithography technique. Polyethylene glycol diacrylate (photo-sensitive polymer), Irgacure 819 (photo-initiator), curcumin (dye) and polyaniline (conductive polymer) are blended to make the conductive ink that is crosslinked using free radical photo-polymerization reaction. Curcumin acts as a liquid filter and prevents light from penetrating deep into the photo-sensitive solution and plays a central role in the 3D printing process. The obtained scaffolds demonstrate well defined morphology with an average pore size of 300 ± 15 µm and semi-conducting properties with a conductivity of ~ 10-6 S/m. Cyclic voltammetry analyses detect the electroactivity and highlight how the electron transfer also involve an ionic diffusion between the polymer and the electrolyte solution. Scaffolds reach their maximum swelling extent 30 min after immersing in the PBS at 37 °C and after 4 weeks they demonstrate a slow hydrolytic degradation rate typical of polyethylene glycol network. Conductive scaffolds display tunable conductivity and provide an optimal environment to the cultured mouse cardiac progenitor cells.


Assuntos
Curcumina , Engenharia Tecidual , Camundongos , Animais , Engenharia Tecidual/métodos , Curcumina/metabolismo , Miócitos Cardíacos/metabolismo , Polímeros/química , Polietilenoglicóis/metabolismo , Impressão Tridimensional , Alicerces Teciduais/química
4.
Materials (Basel) ; 15(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36556545

RESUMO

We numerically investigated the use of graphene nanoribbons placed on top of silicon-on-insulator (SOI) strip waveguides for light polarization control in silicon photonic-integrated waveguides. We found that two factors mainly affected the polarization control: the graphene chemical potential and the geometrical parameters of the waveguide, such as the waveguide and nanoribbon widths and distance. We show that the graphene chemical potential influences both TE and TM polarizations almost in the same way, while the waveguide width tapering enables both TE-pass and TM-pass polarizing functionalities. Overall, by increasing the oxide spacer thickness between the silicon waveguide and the top graphene layer, the device insertion losses can be reduced, while preserving a high polarization extinction ratio.

5.
Micromachines (Basel) ; 13(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35630247

RESUMO

Failure of tissues and organs resulting from degenerative diseases or trauma has caused huge economic and health concerns around the world. Tissue engineering represents the only possibility to revert this scenario owing to its potential to regenerate or replace damaged tissues and organs. In a regeneration strategy, biomaterials play a key role promoting new tissue formation by providing adequate space for cell accommodation and appropriate biochemical and biophysical cues to support cell proliferation and differentiation. Among other physical cues, the architectural features of the biomaterial as a kind of instructive stimuli can influence cellular behaviors and guide cells towards a specific tissue organization. Thus, the optimization of biomaterial micro/nano architecture, through different manufacturing techniques, is a crucial strategy for a successful regenerative therapy. Over the last decades, many micro/nanostructured biomaterials have been developed to mimic the defined structure of ECM of various soft and hard tissues. This review intends to provide an overview of the relevant studies on micro/nanostructured scaffolds created for soft and hard tissue regeneration and highlights their biological effects, with a particular focus on striated muscle, cartilage, and bone tissue engineering applications.

6.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445255

RESUMO

One of the most important features of striated cardiac muscle is the excitability that turns on the excitation-contraction coupling cycle, resulting in the heart blood pumping function. The function of the heart pump may be impaired by events such as myocardial infarction, the consequence of coronary artery thrombosis due to blood clots or plaques. This results in the death of billions of cardiomyocytes, the formation of scar tissue, and consequently impaired contractility. A whole heart transplant remains the gold standard so far and the current pharmacological approaches tend to stop further myocardium deterioration, but this is not a long-term solution. Electrically conductive, scaffold-based cardiac tissue engineering provides a promising solution to repair the injured myocardium. The non-conductive component of the scaffold provides a biocompatible microenvironment to the cultured cells while the conductive component improves intercellular coupling as well as electrical signal propagation through the scar tissue when implanted at the infarcted site. The in vivo electrical coupling of the cells leads to a better regeneration of the infarcted myocardium, reducing arrhythmias, QRS/QT intervals, and scar size and promoting cardiac cell maturation. This review presents the emerging applications of intrinsically conductive polymers in cardiac tissue engineering to repair post-ischemic myocardial insult.


Assuntos
Arritmias Cardíacas , Materiais Biocompatíveis , Condutividade Elétrica , Infarto do Miocárdio , Miocárdio/metabolismo , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/terapia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Engenharia Tecidual
7.
Micromachines (Basel) ; 12(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34442536

RESUMO

Myocardial infarction (MI) is the consequence of coronary artery thrombosis resulting in ischemia and necrosis of the myocardium. As a result, billions of contractile cardiomyocytes are lost with poor innate regeneration capability. This degenerated tissue is replaced by collagen-rich fibrotic scar tissue as the usual body response to quickly repair the injury. The non-conductive nature of this tissue results in arrhythmias and asynchronous beating leading to total heart failure in the long run due to ventricular remodelling. Traditional pharmacological and assistive device approaches have failed to meet the utmost need for tissue regeneration to repair MI injuries. Engineered heart tissues (EHTs) seem promising alternatives, but their non-conductive nature could not resolve problems such as arrhythmias and asynchronous beating for long term in-vivo applications. The ability of nanotechnology to mimic the nano-bioarchitecture of the extracellular matrix and the potential of cardiac tissue engineering to engineer heart-like tissues makes it a unique combination to develop conductive constructs. Biomaterials blended with conductive nanomaterials could yield conductive constructs (referred to as extrinsically conductive). These cell-laden conductive constructs can alleviate cardiac functions when implanted in-vivo. A succinct review of the most promising applications of nanomaterials in cardiac tissue engineering to repair MI injuries is presented with a focus on extrinsically conductive nanomaterials.

8.
Entropy (Basel) ; 23(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947077

RESUMO

We study the emission of photons from germinating seeds using an experimental technique designed to detect light of extremely small intensity. We analyze the dark count signal without germinating seeds as well as the photon emission during the germination process. The technique of analysis adopted here, called diffusion entropy analysis (DEA) and originally designed to measure the temporal complexity of astrophysical, sociological and physiological processes, rests on Kolmogorov complexity. The updated version of DEA used in this paper is designed to determine if the signal complexity is generated either by non-ergodic crucial events with a non-stationary correlation function or by the infinite memory of a stationary but non-integrable correlation function or by a mixture of both processes. We find that dark count yields the ordinary scaling, thereby showing that no complexity of either kinds may occur without any seeds in the chamber. In the presence of seeds in the chamber anomalous scaling emerges, reminiscent of that found in neuro-physiological processes. However, this is a mixture of both processes and with the progress of germination the non-ergodic component tends to vanish and complexity becomes dominated by the stationary infinite memory. We illustrate some conjectures ranging from stress induced annihilation of crucial events to the emergence of quantum coherence.

9.
Nanomaterials (Basel) ; 11(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494342

RESUMO

Heavy metal ions and pesticides are extremely dangerous for human health and environment and an accurate detection is an essential step to monitor their levels in water. The standard and most used methods for detecting these pollutants are sophisticated and expensive analytical techniques. However, recent technological advancements have allowed the development of alternative techniques based on optical properties of noble metal nanomaterials, which provide many advantages such as ultrasensitive detection, fast turnover, simple protocols, in situ sampling, on-site capability and reduced cost. This paper provides a review of the most common photo-physical effects impact on the fluorescence of metal nanomaterials and how these processes can be exploited for the detection of pollutant species. The final aim is to provide readers with an updated guide on fluorescent metallic nano-systems used as optical sensors of heavy metal ions and pesticides in water.

10.
Nanoscale ; 12(23): 12405-12415, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32490504

RESUMO

A new fabrication process is developed for growing Bi2Se3 topological insulators in the form of nanowires/nanobelts and ultra-thin films. It consists of two consecutive procedures: first Bi2Se3 nanowires/nanobelts are deposited by standard catalyst free vapour-solid deposition on different substrates positioned inside a quartz tube. Then, the Bi2Se3, stuck on the inner surface of the quartz tube, is re-evaporated and deposited in the form of ultra-thin films on new substrates at a temperature below 100 °C, which is of relevance for flexible electronic applications. The method is new, quick, very inexpensive, easy to control and allows obtaining films with different thickness down to one quintuple layer (QL) during the same procedure. The composition and the crystal structure of both the nanowires/nanobelts and the thin films are analysed by different optical, electronic and structural techniques. For the films, scanning tunnelling spectroscopy shows that the Fermi level is positioned in the middle of the energy bandgap as a consequence of the achieved correct stoichiometry. Ultra-thin films, with thickness in the range 1-10 QLs deposited on n-doped Si substrates, show good rectifying properties suitable for their use as photodetectors in the ultra violet-visible-near infrared wavelength range.

11.
Materials (Basel) ; 11(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154304

RESUMO

Photonic crystals (PCs) show reflectance spectra depending on the geometrical structure of the crystal, the refractive index (neff), and the light incident angle, according to the Bragg-Snell law. Three-dimensional photonic crystals (3D-PCs) composed of polymeric sub-micrometer spheres, are arranged in an ordered face cubic centered (fcc) lattice and are good candidates for vapor sensing by exploiting changes of the reflectance spectra. We synthesized high quality polystyrene (PS) 3D-PCs, commonly called opals, with a filling factor f near to the ideal value of 0.74 and tested their optical response in the presence of different concentrations of methanol (MeOH) vapor. When methanol was present in the voids of the photonic crystals, the reflectance spectra experienced energy shifts. The concentration of methyl alcohol vapor can be inferred, due to a linear dependence of the reflectance band maximum wavelength as a function of the vapor concentration. We tested the reversibility of the process and the time stability of the system. A limit of detection (LOD) equal to 5% (v/v0), where v was the volume of methanol and v0 was the total volume of the solution (methanol and water), was estimated. A model related to capillary condensation for intermediate and high methanol concentrations was discussed. Moreover, a swelling process of the PS spheres was invoked to fully understand the unexpected energy shift found for very high methanol content.

12.
Nanomaterials (Basel) ; 8(7)2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30004404

RESUMO

Silver nanoparticles capped with 3-mercapto-1propanesulfonic acid sodium salt (AgNPs-3MPS), able to interact with Ni2+ or Co2+, have been prepared to detect these heavy metal ions in water. This system works as an optical sensor and it is based on the change of the intensity and shape of optical absorption peak due to the surface plasmon resonance (SPR) when the AgNPs-3MPS are in presence of metals ions in a water solution. We obtain a specific sensitivity to Ni2+ and Co2+ up to 500 ppb (part per billion). For a concentration of 1 ppm (part per million), the change in the optical absorption is strong enough to produce a colorimetric effect on the solution, easily visible with the naked eye. In addition to the UV-VIS characterizations, morphological and dimensional studies were carried out by transmission electron microscopy (TEM). Moreover, the systems were investigated by means of dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and high-resolution X-ray photoelectron spectroscopy (HR-XPS). On the basis of the results, the mechanism responsible for the AgNPs-3MPS interaction with Ni2+ and Co2+ (in the range of 0.5⁻2.0 ppm) looks like based on the coordination compounds formation.

13.
Stem Cells Dev ; 26(19): 1438-1447, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28715970

RESUMO

The design of reliable biocompatible and biodegradable scaffolds remains one of the most important challenges for tissue engineering. In fact, properly designed scaffolds must display an adequate and interconnected porosity to facilitate cell spreading and colonization of the inner layers, and must release physical signals concurring to modulate cell function to ultimately drive cell fate. In this study, a combination of optimal mechanical and biochemical properties has been considered to design a one-component three-dimensional (3D) multitextured hydrogel scaffold to favor cell-scaffold interactions. A polyethylene glycol diacrylate woodpile (PEGDa-Wp) structure of the order of 100 µm has been manufactured using a microstereolithography process. Subsequently, the PEGDa-Wp has been embedded in a PEGDa hydrogel to obtain a 3D scaffold-in-scaffold (3D-SS) system. Finally, the 3D-SS capability to address cell fate has been assessed using human Lin- Sca-1+ cardiac progenitor cells (hCPCs). Results have shown that a multitextured 3D scaffold represents a favorable microenvironment to promote hCPC differentiation and orientation. In fact, while cultured on 3D-SS, hCPCs adopt an ordered 3D spatial orientation and activate the expression of structural proteins, such as the α-sarcomeric actinin, a specific marker of the cardiomyocyte phenotype, and connexin 43, the principal gap junction protein of the heart. Although preliminary, this study demonstrates that complex multitextured scaffolds closely mimicking the extracellular matrix structure and function are efficient in driving progenitor cell fate. A leap forward will be determined by the use of advanced 3D printing technologies that will improve multitextured scaffold manufacturing and their biological efficiency.


Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular , Miócitos Cardíacos/citologia , Alicerces Teciduais/química , Actinina/genética , Actinina/metabolismo , Células-Tronco Adultas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Conexina 43/genética , Conexina 43/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Ácido Hialurônico/análogos & derivados , Hidrogéis/química , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Polietilenoglicóis , Estereolitografia
14.
Beilstein J Nanotechnol ; 8: 539-546, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28382243

RESUMO

We studied the growth and oxidation of niobium nitride (NbN) films that we used to fabricate superconductive tunnel junctions. The thin films were deposited by dc reactive magnetron sputtering using a mixture of argon and nitrogen. The process parameters were optimized by monitoring the plasma with an optical spectroscopy technique. This technique allowed us to obtain NbN as well as good quality AlN films and both were used to obtain NbN/AlN/NbN trilayers. Lift-off lithography and selective anodization of the NbN films were used, respectively, to define the main trilayer geometry and/or to separate electrically, different areas of the trilayers. The anodized films were characterized by using Auger spectroscopy to analyze compounds formed on the surface and by means of a nano-indenter in order to investigate its mechanical and adhesion properties. The transport properties of NbN/AlN/NbN Josephson junctions obtained as a result of the above described fabrication process were measured in liquid helium at 4.2 K.

15.
Beilstein J Nanotechnol ; 7: 1654-1661, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144514

RESUMO

Due their excellent chemo-physical properties and ability to exhibit surface plasmon resonance, silver nanoparticles (AgNPs) have become a material of choice in various applications, such as nanosensors, electronic devices, nanobiotechnology and nanomedicine. In particular, from the environmental monitoring perspective, sensors based on silver nanoparticles are in great demand because of their antibacterial and inexpensive synthetic method. In the present study, we synthesized AgNPs in water phase using silver nitrate as precursor molecules, hydrophilic thiol (3-mercapto-1-propanesulfonic acid sodium salt, 3MPS) and sodium borohydride as capping and reducing agents, respectively. The AgNPs were characterized using techniques such as surface plasmon resonance (SPR) spectroscopy, dynamic light scattering (DLS), zeta potential (ζ-potential) measurements and scanning tunneling microscopy (STM). Further, to demonstrate the environmental application of our AgNPs, we also applied them for heavy metal sensing by detecting visible color modification due to SPR spectral changes. We found that these negatively charged AgNPs show good response to nickel (II) and presented good sensibility properties for the detection of low amount of ions in water in the working range of 1.0-0.1 ppm.

16.
J Colloid Interface Sci ; 414: 24-32, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24231080

RESUMO

A modified emulsion synthesis of poly(methylmethacrylate) (PMMA) with the Eosin Y (EY), commercial chromophore, yields dye doped polymeric nanoparticles (PMMA@EY). A systematic investigation on the experimental parameters (monomer and initiator concentration, reaction time and MMA/EY molar ratio) has been explored to modulate physico-chemical properties of the dye doped polymeric colloids. Spherical shaped particles, doped with EY (0.5-3.0 wt%; loading efficiency η = 11-15%), with controlled diameters in the range 240-510 nm, low dispersity and ζ-potential values in the range between -42 mV and -59 mV, have been synthesized and characterized by means of UV-Vis spectrometry, Dynamic Light Scattering (DLS), laser Doppler electrophoresis and Scanning Electron Microscopy (SEM). Microribbons based on PMMA@EY nanoparticles have been fabricated by room temperature self-assembly of aqueous colloidal suspension on highly wettable glass substrates. Surface chemical treatment assisted the formation of long (up to few centimeters) regular ribbons with rectangular section. Lateral size and height of the structures have been controlled by changing the suspension concentration and/or the deposition volume: the higher suspension concentration produces larger and thicker ribbons and the higher deposited volume produces thicker ribbons (up to 23 µm with 198 µL of a 3 wt% suspension). Moreover, a transition from a film-like to a ribbon-like growth has been observed with increasing nanoparticles concentration. Short range ordering and photonic crystal features have been maintained in the fluorescent ribbon microarchitecture, resulting in a self-assembled material with excellent potential for the development of mirror-less and random lasers.

17.
J Phys Chem B ; 115(42): 11993-2000, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21916511

RESUMO

In this paper we report the synthesis and characterization of a trihydroxylated nonlinear optical (NLO) azochromophore and its functionalization with 2,4-tolylendiisocyanate (TDI) to give an amorphous mixture of isomers that was used as a starting compound for the preparation of cross-linked electro-optic (EO) thin films. An unedited type of thermal cross-linking reaction was used, exploiting the reactivity of isocyanate groups themselves in the presence of N,N-dimethylacetamide, without the addition of any hydroxylated comonomer as usual in the preparation of polyurethanes. Thin films were prepared by spin coating and corona poled during thermal cross-linking. A d(33) value of 33 pm/V was obtained by second-harmonic generation (SHG) measurements on poled films, and an excellent stability of SHG signal was shown upon aging at 130 °C and during dynamic thermal stability measurements.

18.
Arch Biochem Biophys ; 417(2): 159-64, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12941297

RESUMO

The dipolar relaxation process induced by the excitation of the single tryptophan residue of four proteins (staphylococcal nuclease, ribonuclease-T1, phosphofructokinase, and superoxide dismutase) has been studied by dynamic fluorescence measurements. A new algorithm taking into account the relaxation effect has been applied to the fluorescence decay function obtained by phase-shift and demodulation data. This approach only requires that fluorescence be collected through the whole emission spectrum, avoiding the time-consuming determination of the data at different emission wavelengths, as usual with time-resolved emission spectroscopy. The results nicely match those reported in the literature for staphylococcal nuclease and ribonuclease-T1, demonstrating the validity of the model. Furthermore, this new methodology provides an alternative explanation for the complex decay of phosphofructokinase and human superoxide dismutase suggesting the presence of a relaxation process even in proteins that lack a lifetime-dependent spectral shift. These findings may have important implications on the analysis of small-scale protein dynamics, since dielectric relaxation directly probes a local structural change around the excited state of tryptophan.


Assuntos
Algoritmos , Enzimas/química , Proteínas/química , Espectrometria de Fluorescência/métodos , Triptofano/química , Nuclease do Micrococo/química , Modelos Moleculares , Movimento (Física) , Fosfofrutoquinases/química , Conformação Proteica , Ribonuclease T1/química , Superóxido Dismutase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA