Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Clin Transl Med ; 14(2): e1565, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38328889

RESUMO

BACKGROUND: Heart failure due to myocardial infarction (MI) involves fibrosis driven by epicardium-derived cells (EPDCs) and cardiac fibroblasts, but strategies to inhibit and provide cardio-protection remains poor. The imprinted gene, non-canonical NOTCH ligand 1 (Dlk1), has previously been shown to mediate fibrosis in the skin, lung and liver, but very little is known on its effect in the heart. METHODS: Herein, human pericardial fluid/plasma and tissue biopsies were assessed for DLK1, whereas the spatiotemporal expression of Dlk1 was determined in mouse hearts. The Dlk1 heart phenotype in normal and MI hearts was assessed in transgenic mice either lacking or overexpressing Dlk1. Finally, in/ex vivo cell studies provided knowledge on the molecular mechanism. RESULTS: Dlk1 was demonstrated in non-myocytes of the developing human myocardium but exhibited a restricted pericardial expression in adulthood. Soluble DLK1 was twofold higher in pericardial fluid (median 45.7 [34.7 (IQR)) µg/L] from cardiovascular patients (n = 127) than in plasma (median 26.1 µg/L [11.1 (IQR)]. The spatial and temporal expression pattern of Dlk1 was recapitulated in mouse and rat hearts. Similar to humans lacking Dlk1, adult Dlk1-/- mice exhibited a relatively mild developmental, although consistent cardiac phenotype with some abnormalities in heart size, shape, thorax orientation and non-myocyte number, but were functionally normal. However, after MI, scar size was substantially reduced in Dlk1-/- hearts as compared with Dlk1+/+ littermates. In line, high levels of Dlk1 in transgenic mice Dlk1fl/fl xWT1GFPCre and Dlk1fl/fl xαMHCCre/+Tam increased scar size following MI. Further mechanistic and cellular insight demonstrated that pericardial Dlk1 mediates cardiac fibrosis through epithelial to mesenchymal transition (EMT) of the EPDC lineage by maintaining Integrin ß8 (Itgb8), a major activator of transforming growth factor ß and EMT. CONCLUSIONS: Our results suggest that pericardial Dlk1 embraces a, so far, unnoticed role in the heart augmenting cardiac fibrosis through EMT. Monitoring DLK1 levels as well as targeting pericardial DLK1 may thus offer new venues for cardio-protection.


Assuntos
Transição Epitelial-Mesenquimal , Infarto do Miocárdio , Adulto , Animais , Humanos , Camundongos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cicatriz/metabolismo , Cicatriz/patologia , Transição Epitelial-Mesenquimal/genética , Fibrose , Ligantes , Camundongos Transgênicos , Infarto do Miocárdio/genética , Pericárdio/metabolismo , Tórax/patologia
2.
Peptides ; 164: 170990, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36894067

RESUMO

Since the AT2-receptor (AT2R) agonist C21 has structural similarity to the AT1-receptor antagonists Irbesartan and Losartan, which are antagonists not only at the AT1R, but also at thromboxane TP-receptors, we tested the hypothesis that C21 has TP-receptor antagonistic properties as well. Isolated mouse mesenteric arteries from C57BL/6 J and AT2R-knockout mice (AT2R-/y) were mounted in wire myographs, contracted with either phenylephrine or the thromboxane A2 (TXA2) analogue U46619, and the relaxing effect of C21 (0.1 nM - 10 µM) was investigated. The effect of C21 on U46619-induced platelet aggregation was measured by an impedance aggregometer. Direct interaction of C21 with TP-receptors was determined by an ß-arrestin biosensor assay. C21 caused significant, concentration-dependent relaxations in phenylephrine- and U46619-contracted mesenteric arteries from C57BL/6 J mice. The relaxing effect of C21 was absent in phenylephrine-contracted arteries from AT2R-/y mice, whereas it was unchanged in U46619-contracted arteries from AT2R-/y mice. C21 inhibited U46619-stimulated aggregation of human platelets, which was not inhibited by the AT2R-antagonist PD123319. C21 reduced U46619-induced recruitment of ß-arrestin to human thromboxane TP-receptors with a calculated Ki of 3.74 µM. We conclude that in addition to AT2R-agonistic properties, C21 also acts as low-affinity TP-receptor antagonist, and that - depending on the constrictor - both mechanisms can be responsible for C21-induced vasorelaxation. Furthermore, by acting as a TP-receptor antagonist, C21 inhibits platelet aggregation. These findings are important for understanding potential off-target effects of C21 in the preclinical and clinical context and for the interpretation of C21-related myography data in assays with TXA2-analogues as constrictor.


Assuntos
Receptores de Tromboxanos , Tromboxanos , Humanos , Camundongos , Animais , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Camundongos Endogâmicos C57BL , Tromboxano A2/farmacologia , Fenilefrina/farmacologia , Angiotensinas
3.
Am J Physiol Heart Circ Physiol ; 322(4): H681-H682, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35324333
4.
Br J Pharmacol ; 179(5): 1049-1064, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34664280

RESUMO

BACKGROUND AND PURPOSE: Superoxide anions can reduce the bioavailability and actions of endothelium-derived NO. In human resistance-sized arteries, endothelium-dependent vasodilatation can be mediated by H2 O2 instead of NO. Here, we tested the hypothesis that in resistance arteries from patients with cardiovascular disease, endothelium-dependent vasodilatation is mediated by a reactive oxygen species and not impaired by oxidative stress. EXPERIMENTAL APPROACH: Small arteries were isolated from biopsies of the parietal pericardium of patients undergoing elective cardiothoracic surgery and were studied using immunohistochemical and organ chamber techniques. KEY RESULTS: NO synthases 1, 2 and 3, superoxide dismutase 1 and catalase proteins were observed in the microvascular wall. Relaxing responses to bradykinin were endothelium dependent. During submaximal depolarization-induced contraction, bradykinin-mediated relaxations were inhibited by inhibitors of NO synthases (NOS) and soluble guanylyl cyclase (sGC) but not by scavengers of NO or HNO, inhibitors of cyclooxygenases, neuronal NO synthase, superoxide dismutase or catalase, or by exogenous catalase. During contraction stimulated by endothelin-1, these relaxations were not reduced by any of these interventions except DETCA, which caused a small reduction. CONCLUSION AND IMPLICATIONS: In resistance arteries from patients with cardiovascular disease, endothelium-dependent relaxations seem not to be mediated by NO, HNO or H2 O2 , although NOS and sGC can be involved. These vasodilator responses continue during excessive oxidative stress.


Assuntos
Doenças Cardiovasculares , Óxido Nítrico , Artérias/metabolismo , Bradicinina/farmacologia , Catalase , Endotélio Vascular/metabolismo , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase , Guanilil Ciclase Solúvel , Vasodilatação
6.
Ophthalmic Res ; 64(4): 561-566, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33454711

RESUMO

INTRODUCTION: As the only part of the human vasculature, the retina is available for direct, noninvasive inspection. Retinal vascular fractal dimension (DF) is a method to measure the structure of the retinal vascular tree, with higher noninteger values between 1 and 2 representing a more complex and dense retinal vasculature. Retinal vascular structure has been associated with a variety of systemic diseases, and this study examined the association of DF and macrovascular cardiac disease in a case-control design. METHODS: Retinal fundus photos were captured with Topcon TRC-50X in 38 persons that had coronary artery bypass grafting (CABG, cases) and 37 cardiovascular healthy controls. The semiautomatic software VAMPIRE was used to measure retinal DF. RESULTS: Patients with CABG had lower DF of the retinal main venular vessels compared to the control group (1.15 vs. 1.18, p = 0.01). In a multivariable regression model adjusted for gender and age, eyes in the fourth quartile with higher DF were less likely to have CABG compared to patients in the first (OR, 7.20; 95% confidence interval: 1.63-31.86; p = 0.009) and second (OR, 8.25; 95% confidence interval: 1.70-40.01; p = 0.009) quartiles. CONCLUSIONS: This study demonstrates that lower complexity of main venular vessels associates with higher risk of having CABG. The research supports the hypothesis that the retinal vascular structure can be used to assess nonocular macrovascular disease.


Assuntos
Fractais , Cardiopatias , Fundo de Olho , Humanos , Retina , Vasos Retinianos
7.
Physiol Rev ; 101(2): 495-544, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33270533

RESUMO

Small arteries, which play important roles in controlling blood flow, blood pressure, and capillary pressure, are under nervous influence. Their innervation is predominantly sympathetic and sensory motor in nature, and while some arteries are densely innervated, others are only sparsely so. Innervation of small arteries is a key mechanism in regulating vascular resistance. In the second half of the previous century, the physiology and pharmacology of this innervation were very actively investigated. In the past 10-20 yr, the activity in this field was more limited. With this review we highlight what has been learned during recent years with respect to development of small arteries and their innervation, some aspects of excitation-release coupling, interaction between sympathetic and sensory-motor nerves, cross talk between endothelium and vascular nerves, and some aspects of their role in vascular inflammation and hypertension. We also highlight what remains to be investigated to further increase our understanding of this fundamental aspect of vascular physiology.


Assuntos
Artérias/inervação , Neurônios Motores/fisiologia , Células Receptoras Sensoriais/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Humanos , Hipertensão/fisiopatologia , Neurotransmissores/fisiologia
8.
PLoS Biol ; 18(11): e3000885, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33170835

RESUMO

Hypertension is the most important cause of death and disability in the elderly. In 9 out of 10 cases, the molecular cause, however, is unknown. One mechanistic hypothesis involves impaired endothelium-dependent vasodilation through reactive oxygen species (ROS) formation. Indeed, ROS forming NADPH oxidase (Nox) genes associate with hypertension, yet target validation has been negative. We re-investigate this association by molecular network analysis and identify NOX5, not present in rodents, as a sole neighbor to human vasodilatory endothelial nitric oxide (NO) signaling. In hypertensive patients, endothelial microparticles indeed contained higher levels of NOX5-but not NOX1, NOX2, or NOX4-with a bimodal distribution correlating with disease severity. Mechanistically, mice expressing human Nox5 in endothelial cells developed-upon aging-severe systolic hypertension and impaired endothelium-dependent vasodilation due to uncoupled NO synthase (NOS). We conclude that NOX5-induced uncoupling of endothelial NOS is a causal mechanism and theragnostic target of an age-related hypertension endotype. Nox5 knock-in (KI) mice represent the first mechanism-based animal model of hypertension.


Assuntos
Hipertensão/fisiopatologia , NADPH Oxidase 5/genética , Óxido Nítrico/metabolismo , Adulto , Fatores Etários , Idoso , Animais , Células Endoteliais , Endotélio Vascular , Feminino , Técnicas de Introdução de Genes/métodos , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Pessoa de Meia-Idade , NADPH Oxidase 5/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Óxido Nítrico/genética , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Espécies Reativas de Oxigênio
9.
J Clin Endocrinol Metab ; 105(11)2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32875328

RESUMO

OBJECTIVE: Pregnancy-associated plasma protein-A (PAPP-A) has been suggested as a proatherogenic enzyme by its ability to locally increase insulin-like growth factor (IGF) activity through proteolytic cleavage of IGF binding protein-4 (IGFBP-4). Recently, stanniocalcin-2 (STC2) was discovered as an inhibitor of PAPP-A. This study aimed to investigate IGFBP-4, PAPP-A, and STC2 as local regulators of IGF bioactivity in the cardiac microenvironment by comparing levels in the pericardial fluid with those in the circulation of patients with cardiovascular disease. METHODS: Plasma and pericardial fluid were obtained from 39 patients undergoing elective cardiothoracic surgery, hereof 15 patients with type 2 diabetes. Concentrations of IGF-I, intact and fragmented IGFBP-4, PAPP-A, and STC2 were determined by immunoassays and IGF bioactivity by a cell-based assay. RESULTS: In pericardial fluid, the concentrations of total IGF-I, intact IGFBP-4, and STC2 were 72 ± 10%, 91 ± 5%, and 40 ± 24% lower than in plasma, while PAPP-A was 15 times more concentrated. The levels of the 2 IGFBP-4 fragments generated by PAPP-A and reflecting PAPP-A activity were elevated by more than 25%. IGF bioactivity was 62 ± 81% higher in the pericardial fluid than plasma. Moreover, pericardial fluid levels of both IGFBP-4 fragments correlated with the concentration of PAPP-A and with the bioactivity of IGF. All protein levels were similar in pericardial fluid from nondiabetic and diabetic subjects. CONCLUSIONS: PAPP-A increases IGF bioactivity by cleavage of IGFBP-4 in the pericardial cavity of cardiovascular disease patients. This study provides evidence for a distinct local activity of the IGF system, which may promote cardiac dysfunction and coronary atherosclerosis.


Assuntos
Doenças Cardiovasculares/metabolismo , Líquido Pericárdico/metabolismo , Pericárdio/metabolismo , Proteína Plasmática A Associada à Gravidez/metabolismo , Somatomedinas/metabolismo , Idoso , Doenças Cardiovasculares/cirurgia , Ponte de Artéria Coronária , Diabetes Mellitus Tipo 2/metabolismo , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Pessoa de Meia-Idade
12.
Clin Sci (Lond) ; 133(2): 239-252, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30617188

RESUMO

Kidney fibrosis is the common pathophysiological mechanism in end-stage renal disease characterized by excessive accumulation of myofibroblast-derived extracellular matrix. Natriuretic peptides have been demonstrated to have cyclic guanosine monophosphate (cGMP)-dependent anti-fibrotic properties likely due to interference with pro-fibrotic tissue growth factor ß (TGF-ß) signaling. However, in vivo, natriuretic peptides are rapidly degraded by neutral endopeptidases (NEP). In a unilateral ureteral obstruction (UUO) mouse model for kidney fibrosis we assessed the anti-fibrotic effects of SOL1, an orally active compound that inhibits NEP and endothelin-converting enzyme (ECE). Mice (n=10 per group) subjected to UUO were treated for 1 week with either solvent, NEP-/ECE-inhibitor SOL1 (two doses), reference NEP-inhibitor candoxatril or the angiotensin II receptor type 1 (AT1)-antagonist losartan. While NEP-inhibitors had no significant effect on blood pressure, they did increase urinary cGMP levels as well as endothelin-1 (ET-1) levels. Immunohistochemical staining revealed a marked decrease in renal collagen (∼55% reduction, P<0.05) and α-smooth muscle actin (α-SMA; ∼40% reduction, P<0.05). Moreover, the number of α-SMA positive cells in the kidneys of SOL1-treated groups inversely correlated with cGMP levels consistent with a NEP-dependent anti-fibrotic effect. To dissect the molecular mechanisms associated with the anti-fibrotic effects of NEP inhibition, we performed a 'deep serial analysis of gene expression (Deep SAGE)' transcriptome and targeted metabolomics analysis of total kidneys of all treatment groups. Pathway analyses linked increased cGMP and ET-1 levels with decreased nuclear receptor signaling (peroxisome proliferator-activated receptor [PPAR] and liver X receptor/retinoid X receptor [LXR/RXR] signaling) and actin cytoskeleton organization. Taken together, although our transcriptome and metabolome data indicate metabolic dysregulation, our data support the therapeutic potential of NEP inhibition in the treatment of kidney fibrosis via cGMP elevation and reduced myofibroblast formation.


Assuntos
Benzazepinas/farmacologia , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Neprilisina/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Obstrução Ureteral/tratamento farmacológico , Animais , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/enzimologia , Rim/patologia , Nefropatias/enzimologia , Nefropatias/genética , Nefropatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/enzimologia , Miofibroblastos/patologia , Células NIH 3T3 , Neprilisina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Obstrução Ureteral/enzimologia , Obstrução Ureteral/genética , Obstrução Ureteral/patologia
13.
PLoS One ; 13(11): e0206802, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30395653

RESUMO

BACKGROUND: The pericardial fluid may be representative of the interstitium of the heart. The aim of this study was to discriminate in cardiovascular disease patients between adipocytokines that are produced locally by the heart and those supplied by the circulation. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to determine levels of N-terminal pro-brain natriuretic peptide (NT-pBNP), fatty acid-binding protein 4 (FABP4), leptin, lipocalin-2, neutrophil elastase, proteinase-3, high sensitivity C-reactive protein (hsCRP) and adiponectin in venous plasma and pericardial fluid harvested during elective cardio-thoracic surgery (n = 132-152). RESULTS: In pericardial fluid compared to plasma, the levels were significantly smaller (p < 0.001) for leptin, lipocalin-2, neutrophil elastase, proteinase-3, hsCRP and adiponectin. For these biomarkers, the ratio of pericardial fluid-to-plasma level ([PF]/[P], median (interquartile range)) was 0.65 (0.47-1.01), 0.78 (0.56-1.09), 0.23 (0.11-0.60), 0.17 (0.09-0.36), 0.14 (0.08-0.35), and 0.25 (0.15-0.34), respectively. In contrast, pericardial fluid was significantly enriched (p < 0.001) in NT-pBNP ([PF]/[P]: 1.9 (1.06-2.73)) and even more so for FABP4 ([PF]/[P]: 3.90 (1.47-9.77)). Moreover, in pericardial fluid, the adipocytokines interrelated all significantly positive and correlated negative to hsCRP, whereas for NT-pBNP only a significantly positive correlation with adiponectin was found. These interrelations were distinct from those in the plasma, as were the correlations of the pericardial biomarkers with patient characteristics compared to plasma. CONCLUSIONS: In cardiovascular disease patients, the pericardial cavity is a distinct adipocytokine microenvironment in which especially FABP4 is mainly derived from the heart.


Assuntos
Doenças Cardiovasculares/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Pericárdio/metabolismo , Adipocinas/sangue , Adipocinas/metabolismo , Adiponectina/sangue , Adiponectina/metabolismo , Idoso , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/sangue , Proteínas de Ligação a Ácido Graxo/sangue , Feminino , Humanos , Leptina/sangue , Leptina/metabolismo , Elastase de Leucócito/sangue , Elastase de Leucócito/metabolismo , Lipocalina-2/sangue , Lipocalina-2/metabolismo , Masculino , Pessoa de Meia-Idade , Mieloblastina/sangue , Mieloblastina/metabolismo , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/metabolismo , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/metabolismo
14.
Physiol Rep ; 6(11): e13717, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29890043

RESUMO

Endothelial arginase 1 was ablated to assess whether this prevents hyperglycemia-induced endothelial dysfunction by improving arginine availability for nitric oxide production. Endothelial Arg1-deficient mice (Arg1-KOTie2 ) were generated by crossing Arg1fl/fl (controls) with Tie2Cretg/- mice and analyzed by immunohistochemistry, measurements of hemodynamics, and wire myography. Ablation was confirmed by immunohistochemistry. Mean arterial blood pressure was similar in conscious male control and Arg1-KOTie2 mice. Depletion of circulating arginine by intravenous infusion of arginase 1 or inhibition of nitric oxide synthase activity with L-NG -nitro-arginine methyl ester increased mean arterial pressure similarly in control (9 ± 2 and 34 ± 2 mmHg, respectively) and Arg1-KOTie2 mice (11 ± 3 and 38 ± 4 mmHg, respectively). Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Arg1-KOTie2 and control animals by wire myography. Diabetes was induced in 10-week-old control and Arg1-KOTie2 mice with streptozotocin, and vasomotor responses were studied 10 weeks later. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in normoglycemic control and Arg1-KOTie2 mice. The relaxing response to acetylcholine was dependent on the availability of extracellular l-arginine. In the diabetic mice, arterial relaxation responses to endothelium-dependent hyperpolarization and to exogenous nitric oxide were impaired. The data show that endothelial ablation of arginase 1 in mice does not markedly modify smooth muscle and endothelial functions of a resistance artery under normo- and hyperglycemic conditions.


Assuntos
Arginase/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Células Endoteliais/metabolismo , Vasodilatação , Animais , Arginase/genética , Pressão Arterial , Artérias/fisiopatologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo
15.
J Vis Exp ; (134)2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29683445

RESUMO

The pathogenic contribution of resistance artery remodeling is documented in essential hypertension, diabetes and the metabolic syndrome. Investigations and development of microstructurally motivated mathematical models for understanding the mechanical properties of human resistance arteries in health and disease have the potential to aid understanding how disease and medical treatments affect the human microcirculation. To develop these mathematical models, it is essential to decipher the relationship between the mechanical and microarchitectural properties of the microvascular wall. In this work, we describe an ex vivo method for passive mechanical testing and simultaneous label-free three-dimensional imaging of the microarchitecture of elastin and collagen in the arterial wall of isolated human resistance arteries. The imaging protocol can be applied to resistance arteries of any species of interest. Image analyses are described for quantifying i) pressure-induced changes in internal elastic lamina branching angles and adventitial collagen straightness using Fiji and ii) collagen and elastin volume densities determined using Ilastik software. Preferably all mechanical and imaging measurements are performed on live, perfused arteries, however, an alternative approach using standard video-microscopy pressure myography in combination with post-fixation imaging of re-pressurized vessels is discussed. This alternative method provides users with different options for analysis approaches. The inclusion of the mechanical and imaging data in mathematical models of the arterial wall mechanics is discussed, and future development and additions to the protocol are proposed.


Assuntos
Artérias/diagnóstico por imagem , Artérias/metabolismo , Colágeno/metabolismo , Elastina/metabolismo , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Humanos , Modelos Cardiovasculares , Resistência Vascular
16.
Basic Clin Pharmacol Toxicol ; 122(1): 74-81, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28686356

RESUMO

In human pericardial resistance arteries, effects of the endothelium-dependent vasodilator bradykinin are mediated by NO during contraction induced by K+ or the TxA2 analogue U46619 and by H2 O2 during contraction by endothelin-1 (ET-1), respectively. We tested the hypotheses that ET-1 reduces relaxing effects of NO and increases those of H2 O2 in resistance artery smooth muscle of patients with cardiovascular disease. Arterial segments, dissected from the parietal pericardium of 39 cardiothoracic surgery patients, were studied by myography during amplitude-matched contractions induced by K+ , the TXA2 analogue U46619 or ET-1. Effects of the NO donor Na-nitroprusside (SNP) and of exogenous H2 O2 were recorded in the absence and presence of inhibitors of cyclooxygenases, NO synthases and small and intermediate conductance calcium-activated K+ channels. During contractions induced by either of the three stimuli, the potency of SNP did not differ and was not modified by the inhibitors. In vessels contracted with ET-1, the potency of H2 O2 was on average and in terms of interindividual variability considerably larger than in K+ -contracted vessels. Both differences were not statistically significant in the presence of inhibitors of mechanisms of endothelium-dependent vasodilatation. In resistance arteries from patients with cardiovascular disease, ET-1 does not selectively modify smooth muscle relaxing responses to NO or H2 O2 . Furthermore, the candidate endothelium-derived relaxing factor H2 O2 also acts as an endothelium-dependent vasodilator.


Assuntos
Vasos Coronários/efeitos dos fármacos , Endotelina-1/metabolismo , Endotélio Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Idoso , Doenças Cardiovasculares/fisiopatologia , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Pericárdio/fisiopatologia
17.
ESC Heart Fail ; 4(4): 563-575, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29154418

RESUMO

AIMS: Lipocalin-2 is a pro-inflammatory molecule characterized by a highly diversified pattern of expression and structure-functional relationships. In vivo, this molecule exists as multiple variants due to post-translational modifications and/or protein-protein interactions. Lipocalin-2 is modified by polyamination, which enhances the clearance of this protein from the circulation and prevents its excessive accumulation in tissues. On the other hand, animal studies suggest that non-polyaminated lipocalin-2 (npLcn2) plays a causal role in the pathogenesis of obesity-associated medical complications. The present study examined the presence of npLcn2 in samples from healthy volunteers or patients with cardiac abnormalities and evaluated npLcn2 as a biomarker for cardiometabolic risk assessment. METHODS AND RESULTS: Immunoassays were developed to quantify npLcn2 in blood and urine samples collected from 100 volunteers (59 men and 41 women), or venous plasma and pericardial fluid samples obtained from 37 cardiothoracic surgery patients. In healthy volunteers, npLcn2 levels in serum are significantly higher in obese and overweight than in lean subjects. After adjustment for age, gender, smoking, and body mass index (BMI), serum npLcn2 levels are positively correlated with heart rate, circulating triglycerides, high-sensitivity C-reactive protein (hsCRP), and creatinine in plasma. The npLcn2 levels in urine are significantly increased in subjects with metabolic syndrome and positively correlated with BMI, heart rate, circulating triglycerides, and urinary aldosterone. In cardiothoracic surgery patients, the circulating concentrations of npLcn2 are higher (more than two-fold) than those of healthy volunteers and positively correlated with the accumulation of this protein in the pericardial fluid. Heart failure patients exhibit excessive expression and distribution of npLcn2 in mesothelial cells and adipocytes of the parietal pericardium, which are significantly correlated with the elevated plasma levels of npLcn2, total cholesterol, and creatinine. CONCLUSIONS: Quantitative and qualitative evaluation of npLcn2 in human biofluid samples and tissue samples can be applied for risk assessment of healthy individuals and disease management of patients with obesity-related cardiometabolic and renal complications.


Assuntos
Luciferina de Vaga-Lumes/metabolismo , Síndrome Metabólica/metabolismo , Naftóis/metabolismo , Medição de Risco/métodos , Idoso , Biomarcadores/sangue , Biomarcadores/urina , Índice de Massa Corporal , China/epidemiologia , Feminino , Humanos , Imunoensaio , Incidência , Masculino , Síndrome Metabólica/epidemiologia , Pessoa de Meia-Idade , Prognóstico
18.
Curr Neurovasc Res ; 14(4): 306-315, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28982333

RESUMO

BACKGROUND: The regulation of cerebral arterial vasomotor tone involves several mechanisms. The role of sympathetic nerves and the adrenergic neurotransmitter, noradrenaline (NA), has been the subject of debate for decades. Moreover, the specific role of endothelin-1 (ET-1) in cerebral arterial vasoconstriction has not been elucidated to date. In this study, we evaluated the contribution of NA and ET-1 to cerebral artery vasoconstriction. METHODS: Arterial responses of rat middle cerebral arteries, and human pial cerebral arteries to cumulative concentrations of NA and ET-1, and to Electrical Field Stimulation (EFS), were evaluated. To assess the role of NA and ET-1 when EFS was applied, experiments were performed in the presence of adrenergic, neurogenic, and endothelin-1 receptor modulators. RESULTS: We found that vasoconstriction of cerebral arteries following EFS requires the application of exogenous NA, whereas neither EFS nor NA alone induced vasoconstriction. The observed vasoconstriction was abolished by α-adrenoreceptor antagonist, catecholamine-release inhibitor, blockade of the perivascular neurons, and by the endothelin-2 receptor antagonist (BQ123). CONCLUSION: Based on our results, cerebral artery vasoconstriction requires simultaneous neurogenic and adrenergic activation and is ET-1 dependent. We hypothesize that NA modulates the release of ET-1. Upon release, ET-1 binds to the ETA-receptor on smooth muscle cells inducing cerebral artery vasoconstriction.


Assuntos
Artérias Cerebrais/fisiologia , Endotelina-1/farmacologia , Norepinefrina/farmacologia , Receptor Cross-Talk/fisiologia , Receptores de Endotelina/fisiologia , Vasoconstrição/fisiologia , Adulto , Idoso , Animais , Artérias Cerebrais/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos WKY , Receptor Cross-Talk/efeitos dos fármacos , Receptores de Endotelina/agonistas , Vasoconstrição/efeitos dos fármacos , Adulto Jovem
19.
Am J Physiol Heart Circ Physiol ; 313(1): H164-H178, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28432057

RESUMO

The impact of disease-related changes in the extracellular matrix (ECM) on the mechanical properties of human resistance arteries largely remains to be established. Resistance arteries from both pig and human parietal pericardium (PRA) display a different ECM microarchitecture compared with frequently used rodent mesenteric arteries. We hypothesized that the biaxial mechanics of PRA mirror pressure-induced changes in the ECM microarchitecture. This was tested using isolated pig PRA as a model system, integrating vital imaging, pressure myography, and mathematical modeling. Collagenase and elastase digestions were applied to evaluate the load-bearing roles of collagen and elastin, respectively. The incremental elastic modulus linearly related to the straightness of adventitial collagen fibers circumferentially and longitudinally (both R2 ≥ 0.99), whereas there was a nonlinear relationship to the internal elastic lamina elastin fiber branching angles. Mathematical modeling suggested a collagen recruitment strain (means ± SE) of 1.1 ± 0.2 circumferentially and 0.20 ± 0.01 longitudinally, corresponding to a pressure of ~40 mmHg, a finding supported by the vital imaging. The integrated method was tested on human PRA to confirm its validity. These showed limited circumferential distensibility and elongation and a collagen recruitment strain of 0.8 ± 0.1 circumferentially and 0.06 ± 0.02 longitudinally, reached at a distending pressure below 20 mmHg. This was confirmed by vital imaging showing negligible microarchitectural changes of elastin and collagen upon pressurization. In conclusion, we show here, for the first time in resistance arteries, a quantitative relationship between pressure-induced changes in the extracellular matrix and the arterial wall mechanics. The strength of the integrated methods invites for future detailed studies of microvascular pathologies.NEW & NOTEWORTHY This is the first study to quantitatively relate pressure-induced microstructural changes in resistance arteries to the mechanics of their wall. Principal findings using a pig model system were confirmed in human arteries. The combined methods provide a strong tool for future hypothesis-driven studies of microvascular pathologies.


Assuntos
Arteríolas/fisiologia , Pressão Sanguínea/fisiologia , Colágeno/fisiologia , Colágeno/ultraestrutura , Elastina/fisiologia , Elastina/ultraestrutura , Modelos Cardiovasculares , Animais , Arteríolas/diagnóstico por imagem , Arteríolas/ultraestrutura , Simulação por Computador , Módulo de Elasticidade/fisiologia , Matriz Extracelular/fisiologia , Matriz Extracelular/ultraestrutura , Mecanotransdução Celular/fisiologia , Estresse Mecânico , Suínos , Resistência Vascular/fisiologia
20.
Hypertens Res ; 40(8): 738-745, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28298655

RESUMO

Endothelin 1 (ET-1), a potent vasoconstrictor, pro-mitogenic and pro-inflammatory peptide, may promote development of endothelial dysfunction and arterial remodeling. ET-1 can be formed through cleavage of big-ET-1 by endothelin-converting enzyme (ECE) or neutral endopeptidase (NEP). We investigated whether chronic treatment with the novel dual NEP/ECE inhibitor SOL1 improves functional and structural properties of resistance-sized arteries of 32-week-old male spontaneously hypertensive rats (SHR). SHR received a chronic 4-week treatment with SOL1, losartan or hydralazine. We then compared effects of inhibition of NO synthase (NOS) (100 µM l-NAME), blockade of ETA- and ETB-receptors (10 µM bosentan) and stimulation of the endothelium with 0.001-10 µM acetylcholine (ACh) in isolated third-order mesenteric resistance arteries. Losartan and hydralazine significantly lowered blood pressure. Losartan decreased the media-to-lumen ratio of resistance arteries. l-NAME (1) increased arterial contractile responses to K+ (5.9-40 mM) in the losartan, SOL1 and vehicle group and (2) increased the sensitivity to phenylephrine (PHE; 0.16-20 µM) in the SOL1 group but not in the losartan, hydralazine and vehicle group. Relaxing responses to ACh in the absence or presence of l-NAME during contractions induced by either 10 µM PHE or 40 mM K+ were not altered by any in vivo treatment. Acute treatment with bosentan did, however, significantly improve maximal relaxing responses involving endothelium-derived nitric oxide and -hyperpolarizing factors in the SOL1 group but not in the losartan, hydralazine or vehicle group. Thus, chronic inhibition of NEP/ECE improved basal endothelial function but did not alter blood pressure, resistance artery structure and stimulated endothelium-dependent relaxing responses in 32-week-old SHR.


Assuntos
Enzimas Conversoras de Endotelina/antagonistas & inibidores , Endotélio Vascular/fisiopatologia , Inibidores Enzimáticos/uso terapêutico , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Artérias Mesentéricas/fisiopatologia , Neprilisina/antagonistas & inibidores , Inibidores de Proteases/uso terapêutico , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Animais , Benzazepinas/uso terapêutico , Bosentana , Endotélio Vascular/efeitos dos fármacos , Hidralazina/uso terapêutico , Losartan/uso terapêutico , Artérias Mesentéricas/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , NG-Nitroarginina Metil Éster/uso terapêutico , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Ratos , Ratos Endogâmicos SHR , Sulfonamidas/uso terapêutico , Resistência Vascular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA