Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Peptides ; 164: 170990, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36894067

RESUMO

Since the AT2-receptor (AT2R) agonist C21 has structural similarity to the AT1-receptor antagonists Irbesartan and Losartan, which are antagonists not only at the AT1R, but also at thromboxane TP-receptors, we tested the hypothesis that C21 has TP-receptor antagonistic properties as well. Isolated mouse mesenteric arteries from C57BL/6 J and AT2R-knockout mice (AT2R-/y) were mounted in wire myographs, contracted with either phenylephrine or the thromboxane A2 (TXA2) analogue U46619, and the relaxing effect of C21 (0.1 nM - 10 µM) was investigated. The effect of C21 on U46619-induced platelet aggregation was measured by an impedance aggregometer. Direct interaction of C21 with TP-receptors was determined by an ß-arrestin biosensor assay. C21 caused significant, concentration-dependent relaxations in phenylephrine- and U46619-contracted mesenteric arteries from C57BL/6 J mice. The relaxing effect of C21 was absent in phenylephrine-contracted arteries from AT2R-/y mice, whereas it was unchanged in U46619-contracted arteries from AT2R-/y mice. C21 inhibited U46619-stimulated aggregation of human platelets, which was not inhibited by the AT2R-antagonist PD123319. C21 reduced U46619-induced recruitment of ß-arrestin to human thromboxane TP-receptors with a calculated Ki of 3.74 µM. We conclude that in addition to AT2R-agonistic properties, C21 also acts as low-affinity TP-receptor antagonist, and that - depending on the constrictor - both mechanisms can be responsible for C21-induced vasorelaxation. Furthermore, by acting as a TP-receptor antagonist, C21 inhibits platelet aggregation. These findings are important for understanding potential off-target effects of C21 in the preclinical and clinical context and for the interpretation of C21-related myography data in assays with TXA2-analogues as constrictor.


Assuntos
Receptores de Tromboxanos , Tromboxanos , Humanos , Camundongos , Animais , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Camundongos Endogâmicos C57BL , Tromboxano A2/farmacologia , Fenilefrina/farmacologia , Angiotensinas
2.
Am J Physiol Heart Circ Physiol ; 322(4): H681-H682, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35324333
3.
Br J Pharmacol ; 179(5): 1049-1064, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34664280

RESUMO

BACKGROUND AND PURPOSE: Superoxide anions can reduce the bioavailability and actions of endothelium-derived NO. In human resistance-sized arteries, endothelium-dependent vasodilatation can be mediated by H2 O2 instead of NO. Here, we tested the hypothesis that in resistance arteries from patients with cardiovascular disease, endothelium-dependent vasodilatation is mediated by a reactive oxygen species and not impaired by oxidative stress. EXPERIMENTAL APPROACH: Small arteries were isolated from biopsies of the parietal pericardium of patients undergoing elective cardiothoracic surgery and were studied using immunohistochemical and organ chamber techniques. KEY RESULTS: NO synthases 1, 2 and 3, superoxide dismutase 1 and catalase proteins were observed in the microvascular wall. Relaxing responses to bradykinin were endothelium dependent. During submaximal depolarization-induced contraction, bradykinin-mediated relaxations were inhibited by inhibitors of NO synthases (NOS) and soluble guanylyl cyclase (sGC) but not by scavengers of NO or HNO, inhibitors of cyclooxygenases, neuronal NO synthase, superoxide dismutase or catalase, or by exogenous catalase. During contraction stimulated by endothelin-1, these relaxations were not reduced by any of these interventions except DETCA, which caused a small reduction. CONCLUSION AND IMPLICATIONS: In resistance arteries from patients with cardiovascular disease, endothelium-dependent relaxations seem not to be mediated by NO, HNO or H2 O2 , although NOS and sGC can be involved. These vasodilator responses continue during excessive oxidative stress.


Assuntos
Doenças Cardiovasculares , Óxido Nítrico , Artérias/metabolismo , Bradicinina/farmacologia , Catalase , Endotélio Vascular/metabolismo , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase , Guanilil Ciclase Solúvel , Vasodilatação
5.
Physiol Rev ; 101(2): 495-544, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33270533

RESUMO

Small arteries, which play important roles in controlling blood flow, blood pressure, and capillary pressure, are under nervous influence. Their innervation is predominantly sympathetic and sensory motor in nature, and while some arteries are densely innervated, others are only sparsely so. Innervation of small arteries is a key mechanism in regulating vascular resistance. In the second half of the previous century, the physiology and pharmacology of this innervation were very actively investigated. In the past 10-20 yr, the activity in this field was more limited. With this review we highlight what has been learned during recent years with respect to development of small arteries and their innervation, some aspects of excitation-release coupling, interaction between sympathetic and sensory-motor nerves, cross talk between endothelium and vascular nerves, and some aspects of their role in vascular inflammation and hypertension. We also highlight what remains to be investigated to further increase our understanding of this fundamental aspect of vascular physiology.


Assuntos
Artérias/inervação , Neurônios Motores/fisiologia , Células Receptoras Sensoriais/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Humanos , Hipertensão/fisiopatologia , Neurotransmissores/fisiologia
6.
PLoS Biol ; 18(11): e3000885, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33170835

RESUMO

Hypertension is the most important cause of death and disability in the elderly. In 9 out of 10 cases, the molecular cause, however, is unknown. One mechanistic hypothesis involves impaired endothelium-dependent vasodilation through reactive oxygen species (ROS) formation. Indeed, ROS forming NADPH oxidase (Nox) genes associate with hypertension, yet target validation has been negative. We re-investigate this association by molecular network analysis and identify NOX5, not present in rodents, as a sole neighbor to human vasodilatory endothelial nitric oxide (NO) signaling. In hypertensive patients, endothelial microparticles indeed contained higher levels of NOX5-but not NOX1, NOX2, or NOX4-with a bimodal distribution correlating with disease severity. Mechanistically, mice expressing human Nox5 in endothelial cells developed-upon aging-severe systolic hypertension and impaired endothelium-dependent vasodilation due to uncoupled NO synthase (NOS). We conclude that NOX5-induced uncoupling of endothelial NOS is a causal mechanism and theragnostic target of an age-related hypertension endotype. Nox5 knock-in (KI) mice represent the first mechanism-based animal model of hypertension.


Assuntos
Hipertensão/fisiopatologia , NADPH Oxidase 5/genética , Óxido Nítrico/metabolismo , Adulto , Fatores Etários , Idoso , Animais , Células Endoteliais , Endotélio Vascular , Feminino , Técnicas de Introdução de Genes/métodos , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Pessoa de Meia-Idade , NADPH Oxidase 5/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Óxido Nítrico/genética , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Espécies Reativas de Oxigênio
7.
J Clin Endocrinol Metab ; 105(11)2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32875328

RESUMO

OBJECTIVE: Pregnancy-associated plasma protein-A (PAPP-A) has been suggested as a proatherogenic enzyme by its ability to locally increase insulin-like growth factor (IGF) activity through proteolytic cleavage of IGF binding protein-4 (IGFBP-4). Recently, stanniocalcin-2 (STC2) was discovered as an inhibitor of PAPP-A. This study aimed to investigate IGFBP-4, PAPP-A, and STC2 as local regulators of IGF bioactivity in the cardiac microenvironment by comparing levels in the pericardial fluid with those in the circulation of patients with cardiovascular disease. METHODS: Plasma and pericardial fluid were obtained from 39 patients undergoing elective cardiothoracic surgery, hereof 15 patients with type 2 diabetes. Concentrations of IGF-I, intact and fragmented IGFBP-4, PAPP-A, and STC2 were determined by immunoassays and IGF bioactivity by a cell-based assay. RESULTS: In pericardial fluid, the concentrations of total IGF-I, intact IGFBP-4, and STC2 were 72 ± 10%, 91 ± 5%, and 40 ± 24% lower than in plasma, while PAPP-A was 15 times more concentrated. The levels of the 2 IGFBP-4 fragments generated by PAPP-A and reflecting PAPP-A activity were elevated by more than 25%. IGF bioactivity was 62 ± 81% higher in the pericardial fluid than plasma. Moreover, pericardial fluid levels of both IGFBP-4 fragments correlated with the concentration of PAPP-A and with the bioactivity of IGF. All protein levels were similar in pericardial fluid from nondiabetic and diabetic subjects. CONCLUSIONS: PAPP-A increases IGF bioactivity by cleavage of IGFBP-4 in the pericardial cavity of cardiovascular disease patients. This study provides evidence for a distinct local activity of the IGF system, which may promote cardiac dysfunction and coronary atherosclerosis.


Assuntos
Doenças Cardiovasculares/metabolismo , Líquido Pericárdico/metabolismo , Pericárdio/metabolismo , Proteína Plasmática A Associada à Gravidez/metabolismo , Somatomedinas/metabolismo , Idoso , Doenças Cardiovasculares/cirurgia , Ponte de Artéria Coronária , Diabetes Mellitus Tipo 2/metabolismo , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Pessoa de Meia-Idade
9.
Clin Sci (Lond) ; 133(2): 239-252, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30617188

RESUMO

Kidney fibrosis is the common pathophysiological mechanism in end-stage renal disease characterized by excessive accumulation of myofibroblast-derived extracellular matrix. Natriuretic peptides have been demonstrated to have cyclic guanosine monophosphate (cGMP)-dependent anti-fibrotic properties likely due to interference with pro-fibrotic tissue growth factor ß (TGF-ß) signaling. However, in vivo, natriuretic peptides are rapidly degraded by neutral endopeptidases (NEP). In a unilateral ureteral obstruction (UUO) mouse model for kidney fibrosis we assessed the anti-fibrotic effects of SOL1, an orally active compound that inhibits NEP and endothelin-converting enzyme (ECE). Mice (n=10 per group) subjected to UUO were treated for 1 week with either solvent, NEP-/ECE-inhibitor SOL1 (two doses), reference NEP-inhibitor candoxatril or the angiotensin II receptor type 1 (AT1)-antagonist losartan. While NEP-inhibitors had no significant effect on blood pressure, they did increase urinary cGMP levels as well as endothelin-1 (ET-1) levels. Immunohistochemical staining revealed a marked decrease in renal collagen (∼55% reduction, P<0.05) and α-smooth muscle actin (α-SMA; ∼40% reduction, P<0.05). Moreover, the number of α-SMA positive cells in the kidneys of SOL1-treated groups inversely correlated with cGMP levels consistent with a NEP-dependent anti-fibrotic effect. To dissect the molecular mechanisms associated with the anti-fibrotic effects of NEP inhibition, we performed a 'deep serial analysis of gene expression (Deep SAGE)' transcriptome and targeted metabolomics analysis of total kidneys of all treatment groups. Pathway analyses linked increased cGMP and ET-1 levels with decreased nuclear receptor signaling (peroxisome proliferator-activated receptor [PPAR] and liver X receptor/retinoid X receptor [LXR/RXR] signaling) and actin cytoskeleton organization. Taken together, although our transcriptome and metabolome data indicate metabolic dysregulation, our data support the therapeutic potential of NEP inhibition in the treatment of kidney fibrosis via cGMP elevation and reduced myofibroblast formation.


Assuntos
Benzazepinas/farmacologia , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Neprilisina/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Obstrução Ureteral/tratamento farmacológico , Animais , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/enzimologia , Rim/patologia , Nefropatias/enzimologia , Nefropatias/genética , Nefropatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/enzimologia , Miofibroblastos/patologia , Células NIH 3T3 , Neprilisina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Obstrução Ureteral/enzimologia , Obstrução Ureteral/genética , Obstrução Ureteral/patologia
10.
PLoS One ; 13(11): e0206802, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30395653

RESUMO

BACKGROUND: The pericardial fluid may be representative of the interstitium of the heart. The aim of this study was to discriminate in cardiovascular disease patients between adipocytokines that are produced locally by the heart and those supplied by the circulation. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to determine levels of N-terminal pro-brain natriuretic peptide (NT-pBNP), fatty acid-binding protein 4 (FABP4), leptin, lipocalin-2, neutrophil elastase, proteinase-3, high sensitivity C-reactive protein (hsCRP) and adiponectin in venous plasma and pericardial fluid harvested during elective cardio-thoracic surgery (n = 132-152). RESULTS: In pericardial fluid compared to plasma, the levels were significantly smaller (p < 0.001) for leptin, lipocalin-2, neutrophil elastase, proteinase-3, hsCRP and adiponectin. For these biomarkers, the ratio of pericardial fluid-to-plasma level ([PF]/[P], median (interquartile range)) was 0.65 (0.47-1.01), 0.78 (0.56-1.09), 0.23 (0.11-0.60), 0.17 (0.09-0.36), 0.14 (0.08-0.35), and 0.25 (0.15-0.34), respectively. In contrast, pericardial fluid was significantly enriched (p < 0.001) in NT-pBNP ([PF]/[P]: 1.9 (1.06-2.73)) and even more so for FABP4 ([PF]/[P]: 3.90 (1.47-9.77)). Moreover, in pericardial fluid, the adipocytokines interrelated all significantly positive and correlated negative to hsCRP, whereas for NT-pBNP only a significantly positive correlation with adiponectin was found. These interrelations were distinct from those in the plasma, as were the correlations of the pericardial biomarkers with patient characteristics compared to plasma. CONCLUSIONS: In cardiovascular disease patients, the pericardial cavity is a distinct adipocytokine microenvironment in which especially FABP4 is mainly derived from the heart.


Assuntos
Doenças Cardiovasculares/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Pericárdio/metabolismo , Adipocinas/sangue , Adipocinas/metabolismo , Adiponectina/sangue , Adiponectina/metabolismo , Idoso , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/sangue , Proteínas de Ligação a Ácido Graxo/sangue , Feminino , Humanos , Leptina/sangue , Leptina/metabolismo , Elastase de Leucócito/sangue , Elastase de Leucócito/metabolismo , Lipocalina-2/sangue , Lipocalina-2/metabolismo , Masculino , Pessoa de Meia-Idade , Mieloblastina/sangue , Mieloblastina/metabolismo , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/metabolismo , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/metabolismo
11.
Physiol Rep ; 6(11): e13717, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29890043

RESUMO

Endothelial arginase 1 was ablated to assess whether this prevents hyperglycemia-induced endothelial dysfunction by improving arginine availability for nitric oxide production. Endothelial Arg1-deficient mice (Arg1-KOTie2 ) were generated by crossing Arg1fl/fl (controls) with Tie2Cretg/- mice and analyzed by immunohistochemistry, measurements of hemodynamics, and wire myography. Ablation was confirmed by immunohistochemistry. Mean arterial blood pressure was similar in conscious male control and Arg1-KOTie2 mice. Depletion of circulating arginine by intravenous infusion of arginase 1 or inhibition of nitric oxide synthase activity with L-NG -nitro-arginine methyl ester increased mean arterial pressure similarly in control (9 ± 2 and 34 ± 2 mmHg, respectively) and Arg1-KOTie2 mice (11 ± 3 and 38 ± 4 mmHg, respectively). Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Arg1-KOTie2 and control animals by wire myography. Diabetes was induced in 10-week-old control and Arg1-KOTie2 mice with streptozotocin, and vasomotor responses were studied 10 weeks later. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in normoglycemic control and Arg1-KOTie2 mice. The relaxing response to acetylcholine was dependent on the availability of extracellular l-arginine. In the diabetic mice, arterial relaxation responses to endothelium-dependent hyperpolarization and to exogenous nitric oxide were impaired. The data show that endothelial ablation of arginase 1 in mice does not markedly modify smooth muscle and endothelial functions of a resistance artery under normo- and hyperglycemic conditions.


Assuntos
Arginase/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Células Endoteliais/metabolismo , Vasodilatação , Animais , Arginase/genética , Pressão Arterial , Artérias/fisiopatologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo
12.
J Vis Exp ; (134)2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29683445

RESUMO

The pathogenic contribution of resistance artery remodeling is documented in essential hypertension, diabetes and the metabolic syndrome. Investigations and development of microstructurally motivated mathematical models for understanding the mechanical properties of human resistance arteries in health and disease have the potential to aid understanding how disease and medical treatments affect the human microcirculation. To develop these mathematical models, it is essential to decipher the relationship between the mechanical and microarchitectural properties of the microvascular wall. In this work, we describe an ex vivo method for passive mechanical testing and simultaneous label-free three-dimensional imaging of the microarchitecture of elastin and collagen in the arterial wall of isolated human resistance arteries. The imaging protocol can be applied to resistance arteries of any species of interest. Image analyses are described for quantifying i) pressure-induced changes in internal elastic lamina branching angles and adventitial collagen straightness using Fiji and ii) collagen and elastin volume densities determined using Ilastik software. Preferably all mechanical and imaging measurements are performed on live, perfused arteries, however, an alternative approach using standard video-microscopy pressure myography in combination with post-fixation imaging of re-pressurized vessels is discussed. This alternative method provides users with different options for analysis approaches. The inclusion of the mechanical and imaging data in mathematical models of the arterial wall mechanics is discussed, and future development and additions to the protocol are proposed.


Assuntos
Artérias/diagnóstico por imagem , Artérias/metabolismo , Colágeno/metabolismo , Elastina/metabolismo , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Humanos , Modelos Cardiovasculares , Resistência Vascular
13.
Basic Clin Pharmacol Toxicol ; 122(1): 74-81, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28686356

RESUMO

In human pericardial resistance arteries, effects of the endothelium-dependent vasodilator bradykinin are mediated by NO during contraction induced by K+ or the TxA2 analogue U46619 and by H2 O2 during contraction by endothelin-1 (ET-1), respectively. We tested the hypotheses that ET-1 reduces relaxing effects of NO and increases those of H2 O2 in resistance artery smooth muscle of patients with cardiovascular disease. Arterial segments, dissected from the parietal pericardium of 39 cardiothoracic surgery patients, were studied by myography during amplitude-matched contractions induced by K+ , the TXA2 analogue U46619 or ET-1. Effects of the NO donor Na-nitroprusside (SNP) and of exogenous H2 O2 were recorded in the absence and presence of inhibitors of cyclooxygenases, NO synthases and small and intermediate conductance calcium-activated K+ channels. During contractions induced by either of the three stimuli, the potency of SNP did not differ and was not modified by the inhibitors. In vessels contracted with ET-1, the potency of H2 O2 was on average and in terms of interindividual variability considerably larger than in K+ -contracted vessels. Both differences were not statistically significant in the presence of inhibitors of mechanisms of endothelium-dependent vasodilatation. In resistance arteries from patients with cardiovascular disease, ET-1 does not selectively modify smooth muscle relaxing responses to NO or H2 O2 . Furthermore, the candidate endothelium-derived relaxing factor H2 O2 also acts as an endothelium-dependent vasodilator.


Assuntos
Vasos Coronários/efeitos dos fármacos , Endotelina-1/metabolismo , Endotélio Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Idoso , Doenças Cardiovasculares/fisiopatologia , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Pericárdio/fisiopatologia
14.
ESC Heart Fail ; 4(4): 563-575, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29154418

RESUMO

AIMS: Lipocalin-2 is a pro-inflammatory molecule characterized by a highly diversified pattern of expression and structure-functional relationships. In vivo, this molecule exists as multiple variants due to post-translational modifications and/or protein-protein interactions. Lipocalin-2 is modified by polyamination, which enhances the clearance of this protein from the circulation and prevents its excessive accumulation in tissues. On the other hand, animal studies suggest that non-polyaminated lipocalin-2 (npLcn2) plays a causal role in the pathogenesis of obesity-associated medical complications. The present study examined the presence of npLcn2 in samples from healthy volunteers or patients with cardiac abnormalities and evaluated npLcn2 as a biomarker for cardiometabolic risk assessment. METHODS AND RESULTS: Immunoassays were developed to quantify npLcn2 in blood and urine samples collected from 100 volunteers (59 men and 41 women), or venous plasma and pericardial fluid samples obtained from 37 cardiothoracic surgery patients. In healthy volunteers, npLcn2 levels in serum are significantly higher in obese and overweight than in lean subjects. After adjustment for age, gender, smoking, and body mass index (BMI), serum npLcn2 levels are positively correlated with heart rate, circulating triglycerides, high-sensitivity C-reactive protein (hsCRP), and creatinine in plasma. The npLcn2 levels in urine are significantly increased in subjects with metabolic syndrome and positively correlated with BMI, heart rate, circulating triglycerides, and urinary aldosterone. In cardiothoracic surgery patients, the circulating concentrations of npLcn2 are higher (more than two-fold) than those of healthy volunteers and positively correlated with the accumulation of this protein in the pericardial fluid. Heart failure patients exhibit excessive expression and distribution of npLcn2 in mesothelial cells and adipocytes of the parietal pericardium, which are significantly correlated with the elevated plasma levels of npLcn2, total cholesterol, and creatinine. CONCLUSIONS: Quantitative and qualitative evaluation of npLcn2 in human biofluid samples and tissue samples can be applied for risk assessment of healthy individuals and disease management of patients with obesity-related cardiometabolic and renal complications.


Assuntos
Luciferina de Vaga-Lumes/metabolismo , Síndrome Metabólica/metabolismo , Naftóis/metabolismo , Medição de Risco/métodos , Idoso , Biomarcadores/sangue , Biomarcadores/urina , Índice de Massa Corporal , China/epidemiologia , Feminino , Humanos , Imunoensaio , Incidência , Masculino , Síndrome Metabólica/epidemiologia , Pessoa de Meia-Idade , Prognóstico
15.
Am J Physiol Heart Circ Physiol ; 313(1): H164-H178, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28432057

RESUMO

The impact of disease-related changes in the extracellular matrix (ECM) on the mechanical properties of human resistance arteries largely remains to be established. Resistance arteries from both pig and human parietal pericardium (PRA) display a different ECM microarchitecture compared with frequently used rodent mesenteric arteries. We hypothesized that the biaxial mechanics of PRA mirror pressure-induced changes in the ECM microarchitecture. This was tested using isolated pig PRA as a model system, integrating vital imaging, pressure myography, and mathematical modeling. Collagenase and elastase digestions were applied to evaluate the load-bearing roles of collagen and elastin, respectively. The incremental elastic modulus linearly related to the straightness of adventitial collagen fibers circumferentially and longitudinally (both R2 ≥ 0.99), whereas there was a nonlinear relationship to the internal elastic lamina elastin fiber branching angles. Mathematical modeling suggested a collagen recruitment strain (means ± SE) of 1.1 ± 0.2 circumferentially and 0.20 ± 0.01 longitudinally, corresponding to a pressure of ~40 mmHg, a finding supported by the vital imaging. The integrated method was tested on human PRA to confirm its validity. These showed limited circumferential distensibility and elongation and a collagen recruitment strain of 0.8 ± 0.1 circumferentially and 0.06 ± 0.02 longitudinally, reached at a distending pressure below 20 mmHg. This was confirmed by vital imaging showing negligible microarchitectural changes of elastin and collagen upon pressurization. In conclusion, we show here, for the first time in resistance arteries, a quantitative relationship between pressure-induced changes in the extracellular matrix and the arterial wall mechanics. The strength of the integrated methods invites for future detailed studies of microvascular pathologies.NEW & NOTEWORTHY This is the first study to quantitatively relate pressure-induced microstructural changes in resistance arteries to the mechanics of their wall. Principal findings using a pig model system were confirmed in human arteries. The combined methods provide a strong tool for future hypothesis-driven studies of microvascular pathologies.


Assuntos
Arteríolas/fisiologia , Pressão Sanguínea/fisiologia , Colágeno/fisiologia , Colágeno/ultraestrutura , Elastina/fisiologia , Elastina/ultraestrutura , Modelos Cardiovasculares , Animais , Arteríolas/diagnóstico por imagem , Arteríolas/ultraestrutura , Simulação por Computador , Módulo de Elasticidade/fisiologia , Matriz Extracelular/fisiologia , Matriz Extracelular/ultraestrutura , Mecanotransdução Celular/fisiologia , Estresse Mecânico , Suínos , Resistência Vascular/fisiologia
16.
Oncotarget ; 7(26): 39065-39081, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27259994

RESUMO

Aims-SIRT1 exerts potent activity against cellular senescence and vascular ageing. By decreasing LKB1 protein levels, it promotes the survival and regeneration of endothelial cells. The present study aims to investigate the molecular mechanisms underlying SIRT1-mediated LKB1 degradation for the prevention of vascular ageing.Methods and Results-Co-immunoprecipitation assay demonstrated that SIRT1, via its amino-terminus, binds to the DOC domain of HERC2 [HECT and RLD domain containing E3 ubiquitin protein ligase 2], which then ubiquitinates LKB1 in the nuclear compartment of endothelial cells. Site-directed mutagenesis revealed that acetylation at lysine (K) 64 of LKB1 triggers the formation of SIRT1/HERC2/LKB1 protein complex and subsequent proteasomal degradation. In vitro cellular studies suggested that accumulation of acetylated LKB1 in the nucleus leads to endothelial activation, in turn stimulating the proliferation of vascular smooth muscle cells and the production of extracellular matrix proteins. Chromatin immunoprecipitation quantitative PCR confirmed that acetylated LKB1 interacts with and activates TGFß1 promoter, which is inhibited by SIRT1. Knocking down either SIRT1 or HERC2 results in an increased association of LKB1 with the positive regulatory elements of TGFß1 promoter. In mice without endothelial nitric oxide synthase, selective overexpression of human SIRT1 in endothelium prevents hypertension and age-related adverse arterial remodeling. Lentiviral-mediated knockdown of HERC2 abolishes the beneficial effects of endothelial SIRT1 on both arterial remodeling and arterial blood pressure control.Conclusion-By downregulating acetylated LKB1 protein via HERC2, SIRT1 fine-tunes the crosstalk between endothelial and vascular smooth muscle cells to prevent adverse arterial remodeling and maintain vascular homeostasis.


Assuntos
Artérias/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sirtuína 1/metabolismo , Remodelação Vascular , Células 3T3-L1 , Quinases Proteína-Quinases Ativadas por AMP , Acetilação , Animais , Artérias Carótidas/patologia , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Homeostase , Humanos , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Mutagênese Sítio-Dirigida , Óxido Nítrico Sintase Tipo III/genética , Processamento de Proteína Pós-Traducional , Ubiquitina/química , Ubiquitina-Proteína Ligases
17.
PLoS One ; 11(5): e0154693, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27139713

RESUMO

AIM: Obesity and especially hypertrophy of epicardial adipose tissue accelerate coronary atherogenesis. We aimed at comparing levels of inflammatory and atherogenic hormones from adipose tissue in the pericardial fluid and circulation of cardiovascular disease patients. METHODS AND RESULTS: Venous plasma (P) and pericardial fluid (PF) were obtained from elective cardiothoracic surgery patients (n = 37). Concentrations of leptin, adipocyte fatty acid-binding protein (A-FABP) and adiponectin (APN) were determined by enzyme-linked immunosorbent assays (ELISA). The median concentration of leptin in PF (4.3 (interquartile range: 2.8-9.1) µg/L) was comparable to that in P (5.9 (2.2-11) µg/L) and these were significantly correlated to most of the same patient characteristics. The concentration of A-FABP was markedly higher (73 (28-124) versus 8.4 (5.2-14) µg/L) and that of APN was markedly lower (2.8 (1.7-4.2) versus 13 (7.2-19) mg/L) in PF compared to P. APN in PF was unlike in P not significantly related to age, body mass index, plasma triglycerides or coronary artery disease. PF levels of APN, but not A-FABP, were related to the size of paracardial adipocytes. PF levels of APN and A-FABP were not related to the immunoreactivity of paracardial adipocytes for these proteins. CONCLUSION: In cardiac and vascular disease patients, PF is enriched in A-FABP and poor in APN. This adipokine microenvironment is more likely determined by the heart than by the circulation or paracardial adipose tissue.


Assuntos
Adipocinas/metabolismo , Doenças Cardiovasculares/metabolismo , Pericárdio/metabolismo , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Idoso , Doenças Cardiovasculares/patologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Humanos , Leptina/metabolismo , Masculino , Líquido Pericárdico/metabolismo
18.
Clin Sci (Lond) ; 129(12): 1061-75, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26464516

RESUMO

Reduced nitric oxide (NO)/cGMP signalling is observed in age-related vascular disease. We hypothesize that this disturbed signalling involves effects of genomic instability, a primary causal factor in aging, on vascular smooth muscle cells (VSMCs) and that the underlying mechanism plays a role in human age-related vascular disease. To test our hypothesis, we combined experiments in mice with genomic instability resulting from the defective nucleotide excision repair gene ERCC1 (Ercc1(d/-) mice), human VSMC cultures and population genome-wide association studies (GWAS). Aortic rings of Ercc1(d/-) mice showed 43% reduced responses to the soluble guanylate cyclase (sGC) stimulator sodium nitroprusside (SNP). Inhibition of phosphodiesterase (PDE) 1 and 5 normalized SNP-relaxing effects in Ercc1(d/-) to wild-type (WT) levels. PDE1C levels were increased in lung and aorta. cGMP hydrolysis by PDE in lungs was higher in Ercc1(d/-) mice. No differences in activity or levels of cGMP-dependent protein kinase 1 or sGC were observed in Ercc1(d/-) mice compared with WT. Senescent human VSMC showed elevated PDE1A and PDE1C and PDE5 mRNA levels (11.6-, 9- and 2.3-fold respectively), which associated with markers of cellular senescence. Conversely, PDE1 inhibition lowered expression of these markers. Human genetic studies revealed significant associations of PDE1A single nucleotide polymorphisms with diastolic blood pressure (DBP; ß=0.28, P=2.47×10(-5)) and carotid intima-media thickness (cIMT; ß=-0.0061, P=2.89×10(-5)). In summary, these results show that genomic instability and cellular senescence in VSMCs increase PDE1 expression. This might play a role in aging-related loss of vasodilator function, VSMC senescence, increased blood pressure and vascular hypertrophy.


Assuntos
Envelhecimento/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Vasodilatação , Envelhecimento/genética , Animais , Pressão Sanguínea , Artérias Carótidas/enzimologia , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/enzimologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Espessura Intima-Media Carotídea , Células Cultivadas , Senescência Celular , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Endonucleases/deficiência , Endonucleases/genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Hidrólise , Hiperplasia , Hipertensão/enzimologia , Hipertensão/genética , Hipertensão/fisiopatologia , Técnicas In Vitro , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fenótipo , Inibidores da Fosfodiesterase 5/farmacologia , Polimorfismo de Nucleotídeo Único , Sistemas do Segundo Mensageiro , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
19.
Eur Respir J ; 46(4): 1084-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26113671

RESUMO

Limited literature sources implicate mast-cell mediator chymase in the pathologies of pulmonary hypertension and pulmonary fibrosis. However, there is no evidence on the contribution of chymase to the development of pulmonary hypertension associated with lung fibrosis, which is an important medical condition linked with increased mortality of patients who already suffer from a life-threatening interstitial lung disease.The aim of this study was to investigate the role of chymase in this particular pulmonary hypertension form, by using a bleomycin-induced pulmonary hypertension model.Chymase inhibition resulted in attenuation of pulmonary hypertension and pulmonary fibrosis, as evident from improved haemodynamics, decreased right ventricular remodelling/hypertrophy, pulmonary vascular remodelling and lung fibrosis. These beneficial effects were associated with a strong tendency of reduction in mast cell number and activity, and significantly diminished chymase expression levels. Mechanistically, chymase inhibition led to attenuation of transforming growth factor ß1 and matrix-metalloproteinase-2 contents in the lungs. Furthermore, chymase inhibition prevented big endothelin-1-induced vasoconstriction of the pulmonary arteries.Therefore, chymase plays a role in the pathogenesis of pulmonary hypertension associated with pulmonary fibrosis and may represent a promising therapeutic target. In addition, this study may provide valuable insights on the contribution of chymase in the pulmonary hypertension context, in general, regardless of the pulmonary hypertension form.


Assuntos
Quimases/metabolismo , Quimases/fisiologia , Hipertensão Pulmonar/fisiopatologia , Pulmão/fisiopatologia , Fibrose Pulmonar/fisiopatologia , Animais , Bleomicina/química , Quimases/antagonistas & inibidores , Modelos Animais de Doenças , Endotelina-1/metabolismo , Ensaio de Imunoadsorção Enzimática , Hemodinâmica , Humanos , Hipertrofia Ventricular Direita/enzimologia , Imuno-Histoquímica , Pulmão/enzimologia , Pulmão/metabolismo , Mastócitos/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Mesocricetus , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Radioimunoensaio , Distribuição Aleatória , Fator de Crescimento Transformador beta1/metabolismo
20.
J Vasc Res ; 52(1): 1-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25833410

RESUMO

Peripheral vascular resistance is increased in essential hypertension. This involves structural changes of resistance arteries and stiffening of the arterial wall, including remodeling of the extracellular matrix. We hypothesized that biopsies of the human parietal pericardium, obtained during coronary artery bypass grafting or cardiac valve replacement surgeries, can serve as a source of resistance arteries for structural research in cardiovascular disease patients. We applied two-photon excitation fluorescence microscopy to study the parietal pericardium and isolated pericardial resistance arteries with a focus on the collagen and elastin components of the extracellular matrix. Initial findings in pig tissue were confirmed in patient biopsies. The microarchitecture of the internal elastic lamina in both the pig and patient pericardial resistance arteries (studied at a transmural pressure of 100 mm Hg) is fiber like, and no prominent external elastic lamina could be observed. This microarchitecture is very different from that in rat mesenteric arteries frequently used for resistance artery research. In conclusion, we add three-dimensional information on the structure of the extracellular matrix in resistance arteries from cardiovascular disease patients and propose further use of patient pericardial resistance arteries for studies of the human microvasculature.


Assuntos
Doenças Cardiovasculares/patologia , Tecido Elástico/ultraestrutura , Elastina/análise , Pericárdio , Sus scrofa/anatomia & histologia , Idoso , Animais , Doenças Cardiovasculares/metabolismo , Vasos Coronários/ultraestrutura , Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , Feminino , Humanos , Masculino , Artérias Mesentéricas/ultraestrutura , Microscopia de Fluorescência por Excitação Multifotônica , Pessoa de Meia-Idade , Ratos , Especificidade da Espécie , Suínos , Resistência Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA