Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2702, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538613

RESUMO

The efficiency of replication error repair is a critical factor governing the emergence of mutations. However, it has so far been impossible to study this efficiency at the level of individual cells and to investigate if it varies within isogenic cell populations. In addition, why some errors escape repair remains unknown. Here we apply a combination of fluorescent labelling of the Escherichia coli Mismatch Repair (MMR) complex, microfluidics, and time-lapse microscopy, to monitor in real-time the fate of >20000 replication errors. We show that i) many mutations result from errors that are detected by MMR but inefficiently repaired ii) this limited repair efficiency is due to a temporal constraint imposed by the transient nature of the DNA strand discrimination signal, a constraint that is likely conserved across organisms, and iii) repair capacity varies from cell to cell, resulting in a subpopulation of cells with higher mutation rate. Such variations could influence the fitness and adaptability of populations, accelerating for instance the emergence of antibiotic resistance.


Assuntos
Dano ao DNA , Replicação do DNA , Replicação do DNA/genética , Mutação , Mutagênese , Escherichia coli/genética , Reparo de Erro de Pareamento de DNA/genética
2.
PLoS Pathog ; 19(2): e1011127, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36730457

RESUMO

Adherent-invasive Escherichia coli (AIEC) strains are frequently recovered from stools of patients with dysbiotic microbiota. They have remarkable properties of adherence to the intestinal epithelium, and survive better than other E. coli in macrophages. The best studied of these AIEC is probably strain LF82, which was isolated from a Crohn's disease patient. This strain contains five complete prophages, which have not been studied until now. We undertook their analysis, both in vitro and inside macrophages, and show that all of them form virions. The Gally prophage is by far the most active, generating spontaneously over 108 viral particles per mL of culture supernatants in vitro, more than 100-fold higher than the other phages. Gally is also over-induced after a genotoxic stress generated by ciprofloxacin and trimethoprim. However, upon macrophage infection, a genotoxic environment, this over-induction is not observed. Analysis of the transcriptome and key steps of its lytic cycle in macrophages suggests that the excision of the Gally prophage continues to be repressed in macrophages. We conclude that strain LF82 has evolved an efficient way to block the lytic cycle of its most active prophage upon macrophage infection, which may participate to its good survival in macrophages.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Humanos , Escherichia coli , Macrófagos , Mucosa Intestinal , Aderência Bacteriana
3.
J Extracell Biol ; 2(2): e75, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38938523

RESUMO

Research on extracellular vesicles (EVs) and bacteriophages (phages) has been steadily expanding over the past decades as many of their roles in medicine, biology, and ecosystems have been unveiled. Such interest has brought about the need for new tools to quantify and determine the sizes of these biological nanoparticles. A new device based on interferometric light microscopy (ILM), the Videodrop, was recently developed for this purpose. Here, we compared this new device to two nanoparticle tracking analysis (NTA) devices, the NanoSight and the ZetaView, for the analysis of EVs and phages. We used EVs isolated from bacteria, fecal samples, bovine milk and human cells, and phages of various sizes and shape, ranging from 30 to 120 nm of diameter. While NTA instruments correctly enumerated most phages, the Videodrop detected only the largest one, indicating a lower sensitivity threshold compared to the NTA devices. Nevertheless, the performance of the Videodrop compared favourably to that of the NTA devices for the determination of the concentration of eukaryotic EV samples. The NanoSight instrument provided the most precise size distributions but the Videodrop was by far the most time-saving device, making it worthy of consideration for studies conducted on a large number of samples composed of nanoparticles larger than 90 nm.

4.
Viruses ; 13(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946411

RESUMO

This Special Issue celebrates viruses of microbes: those viruses that infect archaea, bacteria and microbial eukaryotes [...].


Assuntos
Archaea/virologia , Bactérias/virologia , Eucariotos/virologia , Fenômenos Fisiológicos Virais , Vírus , Interações Hospedeiro-Patógeno , Microbiologia
5.
Food Microbiol ; 85: 103278, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31500705

RESUMO

The structure and functioning of microbial communities from fermented foods, including cheese, have been extensively studied during the past decade. However, there is still a lack of information about both the occurrence and the role of viruses in modulating the function of this type of spatially structured and solid ecosystems. Viral metagenomics was recently applied to a wide variety of environmental samples and standardized procedures for recovering viral particles from different type of materials has emerged. In this study, we adapted a procedure originally developed to extract viruses from fecal samples, in order to enable efficient virome analysis of cheese surface. We tested and validated the positive impact of both addition of a filtration step prior to virus concentration and substitution of purification by density gradient ultracentrifugation by a simple chloroform treatment to eliminate membrane vesicles. Viral DNA extracted from the several procedures, as well as a vesicle sample, were sequenced using Illumina paired-end MiSeq technology and the subsequent clusters assembled from the virome were analyzed to assess those belonging to putative phages, plasmid-derived DNA, or even from bacterial chromosomal DNA. The best procedure was then chosen, and used to describe the first cheese surface virome, using Epoisses cheese as example. This study provides the basis of future investigations regarding the ecological importance of viruses in cheese microbial ecosystems.


Assuntos
Queijo/virologia , Metagenoma , Metagenômica/métodos , Vírion/genética , Bacteriófagos/genética , Microbiota , Virologia/métodos
6.
ISME J ; 14(3): 771-787, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31827247

RESUMO

Despite an overall temporal stability in time of the human gut microbiota at the phylum level, strong variations in species abundance have been observed. We are far from a clear understanding of what promotes or disrupts the stability of microbiome communities. Environmental factors, like food or antibiotic use, modify the gut microbiota composition, but their overall impacts remain relatively low. Phages, the viruses that infect bacteria, might constitute important factors explaining temporal variations in species abundance. Gut bacteria harbour numerous prophages, or dormant viruses, which can evolve to become ultravirulent phage mutants, potentially leading to important bacterial death. Whether such phenomenon occurs in the mammal's microbiota has been largely unexplored. Here we studied temperate phage-bacteria coevolution in gnotoxenic mice colonised with Roseburia intestinalis, a dominant symbiont of the human gut microbiota, and Escherichia coli, a sub-dominant member of the same microbiota. We show that R. intestinalis L1-82 harbours two active prophages, Jekyll and Shimadzu. We observed the systematic evolution in mice of ultravirulent Shimadzu phage mutants, which led to a collapse of R. intestinalis population. In a second step, phage infection drove the fast counter-evolution of host phage resistance mainly through phage-derived spacer acquisition in a clustered regularly interspaced short palindromic repeats array. Alternatively, phage resistance was conferred by a prophage originating from an ultravirulent phage with a restored ability to lysogenize. Our results demonstrate that prophages are a potential source of ultravirulent phages that can successfully infect most of the susceptible bacteria. This suggests that prophages can play important roles in the short-term temporal variations observed in the composition of the gut microbiota.


Assuntos
Clostridiales/genética , Clostridiales/virologia , Microbioma Gastrointestinal , Camundongos/microbiologia , Camundongos/virologia , Prófagos/fisiologia , Animais , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fezes/microbiologia , Feminino , Humanos , Lisogenia , Camundongos Endogâmicos C3H , Prófagos/genética , Prófagos/isolamento & purificação
7.
Microbiome ; 6(1): 65, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615108

RESUMO

BACKGROUND: Viral metagenomic studies have suggested a role for bacteriophages in intestinal dysbiosis associated with several human diseases. However, interpretation of viral metagenomic studies is limited by the lack of knowledge of phages infecting major human gut commensal bacteria, such as Faecalibacterium prausnitzii, a bacterial symbiont repeatedly found depleted in inflammatory bowel disease (IBD) patients. In particular, no complete genomes of phages infecting F. prausnitzii are present in viral databases. METHODS: We identified 18 prophages in 15 genomes of F. prausnitzii, used comparative genomics to define eight phage clades, and annotated the genome of the type phage of each clade. For two of the phages, we studied prophage induction in vitro and in vivo in mice. Finally, we aligned reads from already published viral metagenomic data onto the newly identified phages. RESULTS: We show that each phage clade represents a novel viral genus and that a surprisingly large fraction of them (10 of the 18 phages) codes for a diversity-generating retroelement, which could contribute to their adaptation to the digestive tract environment. We obtained either experimental or in silico evidence of activity for at least one member of each genus. In addition, four of these phages are either significantly more prevalent or more abundant in stools of IBD patients than in those of healthy controls. CONCLUSION: Since IBD patients generally have less F. prausnitzii in their microbiota than healthy controls, the higher prevalence or abundance of some of its phages may indicate that they are activated during disease. This in turn suggests that phages could trigger or aggravate F. prausnitzii depletion in patients. Our results show that prophage detection in sequenced strains of the microbiota can usefully complement viral metagenomic studies.


Assuntos
Bacteriófagos/fisiologia , Faecalibacterium prausnitzii/virologia , Microbioma Gastrointestinal , Animais , Bacteriófagos/ultraestrutura , Biodiversidade , Colite/etiologia , Dano ao DNA , Disbiose , Genoma Viral , Humanos , Doenças Inflamatórias Intestinais/etiologia , Metagenoma , Metagenômica/métodos , Camundongos , Retroelementos , Simbiose
8.
Science ; 355(6330): 1211-1215, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28302859

RESUMO

Bacteriophage transfer (lysogenic conversion) promotes bacterial virulence evolution. There is limited understanding of the factors that determine lysogenic conversion dynamics within infected hosts. A murine Salmonella Typhimurium (STm) diarrhea model was used to study the transfer of SopEΦ, a prophage from STm SL1344, to STm ATCC14028S. Gut inflammation and enteric disease triggered >55% lysogenic conversion of ATCC14028S within 3 days. Without inflammation, SopEΦ transfer was reduced by up to 105-fold. This was because inflammation (e.g., reactive oxygen species, reactive nitrogen species, hypochlorite) triggers the bacterial SOS response, boosts expression of the phage antirepressor Tum, and thereby promotes free phage production and subsequent transfer. Mucosal vaccination prevented a dense intestinal STm population from inducing inflammation and consequently abolished SopEΦ transfer. Vaccination may be a general strategy for blocking pathogen evolution that requires disease-driven transfer of temperate bacteriophages.


Assuntos
Diarreia/microbiologia , Diarreia/patologia , Enterite/microbiologia , Lisogenia , Fagos de Salmonella/patogenicidade , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/virologia , Animais , Modelos Animais de Doenças , Enterite/prevenção & controle , Inflamação/microbiologia , Inflamação/prevenção & controle , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Resposta SOS em Genética , Fagos de Salmonella/genética , Vacinação , Proteínas Virais/metabolismo
9.
PLoS Genet ; 12(2): e1005861, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26871586

RESUMO

Temperate phages, the bacterial viruses able to enter in a dormant prophage state in bacterial genomes, are present in the majority of bacterial strains for which the genome sequence is available. Although these prophages are generally considered to increase their hosts' fitness by bringing beneficial genes, studies demonstrating such effects in ecologically relevant environments are relatively limited to few bacterial species. Here, we investigated the impact of prophage carriage in the gastrointestinal tract of monoxenic mice. Combined with mathematical modelling, these experimental results provided a quantitative estimation of key parameters governing phage-bacteria interactions within this model ecosystem. We used wild-type and mutant strains of the best known host/phage pair, Escherichia coli and phage λ. Unexpectedly, λ prophage caused a significant fitness cost for its carrier, due to an induction rate 50-fold higher than in vitro, with 1 to 2% of the prophage being induced. However, when prophage carriers were in competition with isogenic phage susceptible bacteria, the prophage indirectly benefited its carrier by killing competitors: infection of susceptible bacteria led to phage lytic development in about 80% of cases. The remaining infected bacteria were lysogenized, resulting overall in the rapid lysogenization of the susceptible lineage. Moreover, our setup enabled to demonstrate that rare events of phage gene capture by homologous recombination occurred in the intestine of monoxenic mice. To our knowledge, this study constitutes the first quantitative characterization of temperate phage-bacteria interactions in a simplified gut environment. The high prophage induction rate detected reveals DNA damage-mediated SOS response in monoxenic mouse intestine. We propose that the mammalian gut, the most densely populated bacterial ecosystem on earth, might foster bacterial evolution through high temperate phage activity.


Assuntos
Bacteriófago lambda/fisiologia , Escherichia coli/virologia , Trato Gastrointestinal/virologia , Interações Hospedeiro-Patógeno/fisiologia , Ativação Viral/fisiologia , Latência Viral/fisiologia , Animais , Bacteriófago lambda/crescimento & desenvolvimento , Bacteriófago lambda/patogenicidade , Contagem de Colônia Microbiana , Transferência Genética Horizontal , Lisogenia , Camundongos , Modelos Biológicos , Mutação/genética , Virulência
10.
Elife ; 3: e04168, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25182849

RESUMO

The bacteria that infect humans and cause cholera are themselves infected by viruses, which have the potential to influence the course of a cholera infection.


Assuntos
Bacteriófagos/genética , Cólera/microbiologia , Vibrio cholerae/patogenicidade , Vibrio cholerae/virologia , Animais , Humanos
11.
Artigo em Inglês | MEDLINE | ID: mdl-24734220

RESUMO

Metagenomic approaches applied to viruses have highlighted their prevalence in almost all microbial ecosystems investigated. In all ecosystems, notably those associated with humans or animals, the viral fraction is dominated by bacteriophages. Whether they contribute to dysbiosis, i.e., the departure from microbiota composition in symbiosis at equilibrium and entry into a state favoring human or animal disease is unknown at present. This review summarizes what has been learnt on phages associated with human and animal microbiota, and focuses on examples illustrating the several ways by which phages may contribute to a shift to pathogenesis, either by modifying population equilibrium, by horizontal transfer, or by modulating immunity.


Assuntos
Bacteriófagos/fisiologia , Ecossistema , Saúde , Microbiota , Animais , Bacteriófagos/crescimento & desenvolvimento , Disbiose , Homeostase , Humanos
12.
PLoS Genet ; 10(3): e1004181, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603854

RESUMO

Bacteriophages (or phages) dominate the biosphere both numerically and in terms of genetic diversity. In particular, genomic comparisons suggest a remarkable level of horizontal gene transfer among temperate phages, favoring a high evolution rate. Molecular mechanisms of this pervasive mosaicism are mostly unknown. One hypothesis is that phage encoded recombinases are key players in these horizontal transfers, thanks to their high efficiency and low fidelity. Here, we associate two complementary in vivo assays and a bioinformatics analysis to address the role of phage encoded recombinases in genomic mosaicism. The first assay allowed determining the genetic determinants of mosaic formation between lambdoid phages and Escherichia coli prophage remnants. In the second assay, recombination was monitored between sequences on phage λ, and allowed to compare the performance of three different Rad52-like recombinases on the same substrate. We also addressed the importance of homologous recombination in phage evolution by a genomic comparison of 84 E. coli virulent and temperate phages or prophages. We demonstrate that mosaics are mainly generated by homology-driven mechanisms that tolerate high substrate divergence. We show that phage encoded Rad52-like recombinases act independently of RecA, and that they are relatively more efficient when the exchanged fragments are divergent. We also show that accessory phage genes orf and rap contribute to mosaicism. A bioinformatics analysis strengthens our experimental results by showing that homologous recombination left traces in temperate phage genomes at the borders of recently exchanged fragments. We found no evidence of exchanges between virulent and temperate phages of E. coli. Altogether, our results demonstrate that Rad52-like recombinases promote gene shuffling among temperate phages, accelerating their evolution. This mechanism may prove to be more general, as other mobile genetic elements such as ICE encode Rad52-like functions, and play an important role in bacterial evolution itself.


Assuntos
Evolução Molecular , Recombinação Homóloga , Mosaicismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Bacteriófago lambda/genética , Escherichia coli/genética , Variação Genética , Recombinases/genética
13.
Planta ; 235(3): 603-14, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22002624

RESUMO

To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.


Assuntos
Secas , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/metabolismo , Nicotiana/metabolismo , Nicotiana/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Ácido Abscísico/metabolismo , Trifosfato de Adenosina/metabolismo , Complexo I de Transporte de Elétrons/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/genética , Estômatos de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Nicotiana/genética
14.
PLoS Genet ; 7(6): e1002107, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21698140

RESUMO

Bacterial diversification is often observed, but underlying mechanisms are difficult to disentangle and remain generally unknown. Moreover, controlled diversification experiments in ecologically relevant environments are lacking. We studied bacterial diversification in the mammalian gut, one of the most complex bacterial environments, where usually hundreds of species and thousands of bacterial strains stably coexist. Herein we show rapid genetic diversification of an Escherichia coli strain upon colonisation of previously germ-free mice. In addition to the previously described mutations in the EnvZ/OmpR operon, we describe the rapid and systematic selection of mutations in the flagellar flhDC operon and in malT, the transcriptional activator of the maltose regulon. Moreover, within each mouse, the three mutant types coexisted at different levels after one month of colonisation. By combining in vivo studies and determination of the fitness advantages of the selected mutations in controlled in vitro experiments, we provide evidence that the selective forces that drive E. coli diversification in the mouse gut are the presence of bile salts and competition for nutrients. Altogether our results indicate that a trade-off between stress resistance and nutritional competence generates sympatric diversification of the gut microbiota. These results illustrate how experimental evolution in natural environments enables identification of both the selective pressures that organisms face in their natural environment and the diversification mechanisms.


Assuntos
Ácidos e Sais Biliares/metabolismo , Biodiversidade , Escherichia coli/genética , Escherichia coli/metabolismo , Trato Gastrointestinal/microbiologia , Fenômenos Fisiológicos da Nutrição , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Flagelos/genética , Trato Gastrointestinal/imunologia , Regulação Bacteriana da Expressão Gênica , Aptidão Genética , Imunidade Inata , Camundongos , Complexos Multienzimáticos/genética , Mutação/genética , Fenótipo , Seleção Genética , Transativadores/genética , Fatores de Transcrição/genética
15.
PLoS One ; 5(7): e11823, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20676396

RESUMO

The spread of epidemics not only depends on the average number of parasites produced per host, but also on the existence of highly infectious individuals. It is widely accepted that infectiousness depends on genetic and environmental determinants. However, even in clonal populations of host and viruses growing in homogeneous conditions, high variability can exist. Here we show that Escherichia coli cells commonly display high differentials in viral burst size, and address the kinetics of emergence of such variability with the non-lytic filamentous virus M13. By single-cell imaging of a virally-encoded fluorescent reporter, we monitor the viral charge distribution in infected bacterial populations at different time following infection. A mathematical model assuming autocatalytic virus replication and inheritance of bacterial growth rates quantitatively reproduces the experimental distributions, demonstrating that deterministic amplification of small host inhomogeneities is a mechanism sufficient to explain large and highly skewed distributions. This mechanism of amplification is general and may occur whenever a parasite has an initial phase of exponential growth within its host. Moreover, it naturally reproduces the shift towards higher virulence when the host is experimenting poor conditions, as observed commonly in host-parasite systems.


Assuntos
Escherichia coli/virologia , Vírus/crescimento & desenvolvimento , Modelos Teóricos
16.
Immunity ; 31(4): 677-89, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19833089

RESUMO

Microbiota-induced cytokine responses participate in gut homeostasis, but the cytokine balance at steady-state and the role of individual bacterial species in setting the balance remain elusive. Herein, systematic analysis of gnotobiotic mice indicated that colonization by a whole mouse microbiota orchestrated a broad spectrum of proinflammatory T helper 1 (Th1), Th17, and regulatory T cell responses whereas most tested complex microbiota and individual bacteria failed to efficiently stimulate intestinal T cell responses. This function appeared the prerogative of a restricted number of bacteria, the prototype of which is the segmented filamentous bacterium, a nonculturable Clostridia-related species, which could largely recapitulate the coordinated maturation of T cell responses induced by the whole mouse microbiota. This bacterium, already known as a potent inducer of mucosal IgA, likely plays a unique role in the postnatal maturation of gut immune functions. Changes in the infant flora may thus influence the development of host immune responses.


Assuntos
Clostridium/imunologia , Citocinas/metabolismo , Intestinos/imunologia , Nódulos Linfáticos Agregados/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Bacteroidetes/imunologia , Citocinas/imunologia , Escherichia coli/imunologia , Feminino , Expressão Gênica , Vida Livre de Germes , Interleucina-17/imunologia , Intestinos/microbiologia , Intestinos/ultraestrutura , Camundongos , Camundongos Endogâmicos C3H , Microscopia Eletrônica de Varredura , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/microbiologia , Linfócitos T Reguladores/microbiologia , Células Th1/microbiologia
17.
PLoS Genet ; 4(1): e2, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18193944

RESUMO

While pleiotropic adaptive mutations are thought to be central for evolution, little is known on the downstream molecular effects allowing adaptation to complex ecologically relevant environments. Here we show that Escherichia coli MG1655 adapts rapidly to the intestine of germ-free mice by single point mutations in EnvZ/OmpR two-component signal transduction system, which controls more than 100 genes. The selective advantage conferred by the mutations that modulate EnvZ/OmpR activities was the result of their independent and additive effects on flagellin expression and permeability. These results obtained in vivo thus suggest that global regulators may have evolved to coordinate activities that need to be fine-tuned simultaneously during adaptation to complex environments and that mutations in such regulators permit adjustment of the boundaries of physiological adaptation when switching between two very distinct environments.


Assuntos
Adaptação Fisiológica/genética , Escherichia coli K12/genética , Escherichia coli K12/fisiologia , Trato Gastrointestinal/microbiologia , Vida Livre de Germes , Animais , Biomarcadores , Permeabilidade da Membrana Celular/genética , Cromossomos Bacterianos , DNA Complementar/biossíntese , Flagelina/biossíntese , Flagelina/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genes Reporter , Biblioteca Genômica , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Modelos Moleculares , Mutação de Sentido Incorreto , Plasmídeos , Mutação Puntual , Porinas/metabolismo , Regiões Promotoras Genéticas , Regulon , Seleção Genética , Análise de Sequência de DNA
18.
Curr Biol ; 16(20): 2048-52, 2006 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-17055985

RESUMO

Locally adapted residents present a formidable barrier to invasion . One solution for invaders is to kill residents . Here, we explore the comparative ecological dynamics of two distinct microbial mechanisms of killing competitors, via the release of chemicals (e.g., bacteriocins ) and via the release of parasites (e.g., temperate phage ). We compared the short-term population dynamics of susceptible E. coli K12 and isogenic carriers of phage varphi80 in experimental cultures to that anticipated by mathematical models using independently derived experimental parameters. Whereas phages are a direct burden to their carriers because of probabilistic host lysis, by killing competitor bacteria they can indirectly benefit bacterial kin made immune by carrying isogenic phage. This is similar to previously described bacteriocin-mediated effects. However, unlike chemical killing, viable phage trigger an epidemic among susceptible competitors, which become factories producing more phage. Amplification makes phage carriers able to invade well-mixed susceptibles even faster when rare, whereas chemical killers can only win in a well-mixed environment when sufficiently abundant. We demonstrate that for plausible parameters, the release of chemical toxins is superior as a resident strategy to repel invasions, whereas the release of temperate phage is superior as a strategy of invasion.


Assuntos
Bacteriófagos/fisiologia , Comportamento Competitivo/fisiologia , Escherichia coli K12/fisiologia , Escherichia coli K12/virologia , Modelos Biológicos , Bacteriocinas/metabolismo , Ecologia , Dinâmica Populacional
19.
PLoS Biol ; 4(7): e193, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16756387

RESUMO

Life history theory accounts for variations in many traits involved in the reproduction and survival of living organisms, by determining the constraints leading to trade-offs among these different traits. The main life history traits of phages-viruses that infect bacteria-are the multiplication rate in the host, the survivorship of virions in the external environment, and their mode of transmission. By comparing life history traits of 16 phages infecting the bacteria Escherichia coli, we show that their mortality rate is constant with time and positively [corrected] correlated to their multiplication rate in the bacterial host. Even though these viruses do not age, this result is in line with the trade-off between survival and reproduction previously observed in numerous aging organisms. Furthermore, a multiple regression shows that the combined effects of two physical parameters, namely, the capsid thickness and the density of the packaged genome, account for 82% of the variation in the mortality rate. The correlations between life history traits and physical characteristics of virions may provide a mechanistic explanation of this trade-off. The fact that this trade-off is present in this very simple biological situation suggests that it might be a fundamental property of evolving entities produced under constraints. Moreover, such a positive correlation between mortality and multiplication reveals an underexplored trade-off in host-parasite interactions.


Assuntos
Bacteriófagos/fisiologia , Leviviridae/fisiologia , Viabilidade Microbiana , Replicação Viral , Microscopia Eletrônica , Temperatura , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA