Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 87(5): 2912-2920, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080182

RESUMO

We report the synthesis of C3-symmetric cryptophanes decorated with three aromatic amine groups on the same CTB cap and their interaction with xenon. The relative stereochemistry of these two stereoisomers syn and anti was assessed thanks to the determination of the X-ray structure of an intermediate compound. As previously observed with the tris-aza-cryptophanes analogs anti-1 and syn-2 (J. Org. Chem. 2021, 86, 11, 7648-7658), both compounds anti-5 and syn-6 show a slow in-out exchange dynamics of xenon at 11.7 T. Our work supports the idea that the presence of nitrogen atoms grafted directly onto the cryptophane backbone has a strong impact on the in-out exchange dynamics of xenon whatever their stereochemistry. This result contrasts with the case of other cryptophanes decorated solely with methoxy substituents. Finally, we demonstrate that these new derivatives can be used to design new anti/syn cryptophanes bearing suitable ligands in order to constitute potent 129Xe NMR-based sensors. An example is reported here with the synthesis of the tris-iodo derivatives anti-13 and syn-14 from compounds anti-5 and syn-6.


Assuntos
Imageamento por Ressonância Magnética , Xenônio , Aminas , Espectroscopia de Ressonância Magnética , Estereoisomerismo , Xenônio/química
2.
J Org Chem ; 86(11): 7648-7658, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34033483

RESUMO

We report the synthesis and optical resolution of C3-symmetrical tris-aza-cryptophanes anti-3 and syn-4, as well as the study of their interaction with xenon via hyperpolarized 129Xe NMR. These molecular cages are close structural analogues of the two well-known cryptophane-A (1; chiral) and cryptophane-B (2; achiral) diastereomers since these new compounds differ only by the presence of three nitrogen atoms grafted onto the same cyclotribenzylene unit. The assignment of their relative (syn vs anti) and absolute configurations was made possible, thanks to the combined use of quantum calculations at the density functional theory level and vibrational circular dichroism spectroscopy. More importantly, our results show that despite the large structural similarities with cryptophane-A (1) and -B (2), these two new compounds show a very different behavior in the presence of xenon in organic solutions. These results demonstrate that prediction of the physical properties of the xenon@cryptophane complexes, only based on structural parameters, remains extremely difficult.

3.
J Org Chem ; 84(14): 9127-9137, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31246016

RESUMO

In this article, we present the synthesis of new cryptophane-type hosts capable of binding xenon in aqueous media and that may be useful for the development of xenon-based magnetic resonance imaging derivatives. The synthetic route proposed was chosen to facilitate both the introduction of water-solubilizing substituents and the functionalization of the host with a single arm showing recognition properties that constitute two crucial steps. This was made possible by preparing new cryptophane-223 derivatives bearing two different chemical functions that can be easily modified at a later stage. Thus, subsequent reactions allowed the design of a new cryptophane host able to bind zinc or nickel cations. The ability of this molecule to bind cationic species was assessed by calorimetric titration experiments and hyperpolarized 129Xe NMR. The advantages and disadvantages of this approach are discussed.

4.
Chirality ; 31(7): 481-491, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31134692

RESUMO

In 1,1,2,2-tetrachloroethane-d2 , the 129 Xe NMR spectrum of the Xe@cryptophane-223 complex bearing seven acetate groups (Xe@1 complex) shows an unusually broad signal compared with that of its congeners (Chapellet, LL. et al. J. Org. Chem. 2015;80:6143-6151). To interpret this unexpected behaviour, a 1 H NMR analysis and a thorough study of the chiroptical properties of 1 as a function of the nature of the solvent have been performed. The 1 H NMR spectra of 1 reveal that a self-encapsulation phenomenon takes place in DMSO-d6 and 1,1,2,2-tetrachloroethane-d2 solvents. Thanks to the separation of the two enantiomers of 1 by HPLC on chiral stationary phase, the two enantiomers of 1 have been studied in detail by polarimetry, electronic (ECD), and vibrational (VCD) circular dichroism spectroscopies. Except for ECD spectroscopy, these chiroptical techniques reveal spectroscopic changes as a function of the nature of the solvent. For instance, in DMSO and 1,1,2,2-tetrachloroethane, in which the self-encapsulation phenomenon takes place, the sign of the specific optical rotation of [CD(-)254 ]-1 and [CD(+)254 ]-1 is changed. These results have then been compared with those obtained with cryptophane-223 bearing only one acetate group on the propylenedioxy linker (compound 2) and with cryptophane-223 bearing six acetate groups (compound 3). A self-encapsulation phenomenon is also observed with compound 2. Finally, compounds 2 and 3 show different chiroptical properties compared with those obtained with the two enantiomers of compound 1.

5.
Chemistry ; 25(20): 5303-5310, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30714652

RESUMO

Herein, the experimental physicochemical and chiroptical properties of a series of phosphahelicenes are reported, focusing on their UV/Vis absorption, luminescence, electronic circular dichroism, optical rotations, and circularly polarized luminescence. Furthermore, detailed analysis of absorption and ECD spectra performed with the help of quantum-chemical calculations allowed us to highlight general features of these helicenic phosphines. Finally, due to well-suited electrochemical properties and thermal stability, the systems were successfully used as emitters in organic light-emitting diodes.

6.
Magn Reson Chem ; 56(7): 672-678, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29218737

RESUMO

Cryptophanes, cage-molecules constituted of aromatic bowls, are now well recognised as powerful xenon hosts in 129 Xe NMR-based biosensing. In the quest of a dual probe that can be addressed only by NMR, we have studied three cryptophanes bearing a tether with an unsaturated bond. The idea behind this is to build probes that can be detected both via hyperpolarised 129 Xe NMR and para-hydrogen induced polarisation 1 H NMR. Only two of the three cryptophanes experience a sufficiently fast hydrogenation enabling the para-hydrogen induced polarisation effect. Although the in-out xenon exchange properties are maintained after hydrogenation, the chemical shift of xenon encaged in these two cryptophanes is not strikingly modified, which impedes safe discrimination of the native and hydrogenated states via 129 Xe NMR. However, a thorough examination of the hyperpolarised 1 H spectra reveals some interesting features for the catalytic process and gives us clues for the design of doubly smart 1 H/129 Xe NMR-based biosensors.

7.
Chemistry ; 21(31): 11096-109, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26119814

RESUMO

Novel conjugated, pyridyl-functionalised triazaphospholes with either tBu or SiMe3 substituents at the 5-position of the N3 PC heterocycle have been prepared by a [3+2] cycloaddition reaction and compared with structurally related, triazole-based systems. Photoexcitation of the 2-pyridyl-substituted triazaphosphole gives rise to a significant fluorescence emission with a quantum yield of up to 12 %. In contrast, the all-nitrogen triazole analogue shows no emission at all. DFT calculations indicate that the 2-pyridyl substituted systems have a more rigid and planar structure than their 3- and 4-pyridyl isomers. Time-dependent (TD) DFT calculations show that only the 2-pyridyl-substituted triazaphosphole exhibits similar planar geometry, with matching conformational arrangements in the lowest energy excited state and the ground state; this helps to explain the enhanced emission intensity. The chelating P,N-hybrid ligand forms a Re(I) complex of the type [(N^N)Re(CO)3 Br] through the coordination of nitrogen atom N(2) to the metal centre rather than through the phosphorus donor. Both structural and spectroscopic data indicate substantial π-accepting character of the triazaphosphole, which is again in contrast to that of the all-nitrogen-containing triazoles. The synthesis and photophysical properties of a new class of phosphorus-containing extended π systems are described.

8.
Chemistry ; 19(20): 6435-42, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23504953

RESUMO

New heterocyclic derivatives of 9-azajulolidine have been synthesized and characterized with respect to their nucleophilicity and Lewis basicity. The Lewis basicity of these bases as quantified through their theoretically calculated methyl-cation affinities correlate well with the experimentally measured reaction rates for addition to benzhydryl cations. All newly synthesized pyridines show exceptional catalytic activities in benchmark acylation reactions, which correlate only poorly with Lewis basicity or nucleophilicity parameters. A combination of Lewis basicity with charge and geometric parameters in the framework of a three-component quantitative structure-activity relationship (QSAR) model is, however, highly predictive.

9.
Chemistry ; 17(46): 12852-71, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22012624

RESUMO

This review article presents how nitrogen-centred Lewis bases were modified in order to increase their reactivity in catalytic processes. As examples, we focus on alcohol acylation and Morita-Baylis-Hilman reactions in order to showcase the fundamental parameters at play in transformations initiated by catalysts bearing respectively an active sp(2) or sp(3) nitrogen atoms. These two aspects are epitomised by two leading compounds, the Steglich base 4-dimethylaminopyridine (DMAP), and 1,4-diazabicyclo[2.2.2]octane (DABCO). Throughout this review, we stress the role played and the information brought by physical organic chemistry. Comprehension of these complex transformations relies on the fundamental knowledge of parameters, such as, nucleophilicity, nucleofugality, Lewis basicity, and crucially also the knowledge of their divergent impacts on each elementary step of the catalytic cycle.

10.
Org Lett ; 13(7): 1836-9, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21384826

RESUMO

Rates for the ring-opening of aziridinium and azetidinium ions by DMAP were measured. The four-membered ring appears to be ca. 17,000 times less reactive compared to the three-membered ring but is still highly relevant from a synthetic viewpoint. The electrophilicity of these strained ammonium ions is measured for the first time.

11.
Org Lett ; 13(3): 530-3, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21186828

RESUMO

3,4,5-Triamino-substituted pyridines are avid for electrophiles but are still willing to give them back. In these compounds three amino groups conjoin their forces into the heterocyclic nitrogen, making it a powerful Lewis base. A short and efficient synthesis is described, and the origin of its unique activity in nucleophilic organocatalysis is rationalized by kinetics and thermodynamic quantifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA