Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 103: 154221, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696799

RESUMO

BACKGROUND: The global burden of leishmaniasis is exacerbated by the limited repertoire of drugs, resulting in an urgent need to develop new therapeutic alternatives. Endoperoxides like ascaridole have emerged as promising anti-parasitic candidates, and its effectiveness was established in an animal model of cutaneous leishmaniasis (CL). However, its impact on Leishmania donovani parasites, causative of visceral leishmaniasis (VL) remains to be established. PURPOSE: This study aimed to delineate the underlying mechanisms contributing towards the leishmanicidal effect of ascaridole in terms of its impact on the cellular redox status and metabolic bioenergetics of L. donovani parasites. METHODOLOGY: The anti-promastigote activity of ascaridole was established by a cell viability assay in L. donovani [MHOM/IN/1983/AG83] and anti-amastigote activity by microscopy and ddPCR (droplet digital polymerase chain reaction). The cellular redox status, mitochondrial membrane potential (MMP), annexin V positivity and cell cycle arrest was evaluated by flow cytometry, while cellular and mitochondrial bioenergetics was assessed using Agilent XFp Analyzer, and the levels of ATP was measured by chemiluminescence. RESULTS: Ascaridole demonstrated strong anti-promastigote and anti-amastigote activities in l. donovani, IC50 (half maximal Inhibitory concentration) being 2.47 ± 0.18 µM and 2.00±0.34 µM respectively, while in J774.A1 and murine peritoneal macrophages, the CC50 (half maximal cytotoxic concentration) was 41.47 ± 4.89 µM and 37.58 ± 5.75 µM respectively. Ascaridole disrupted the redox homeostasis via an enhanced generation of reactive oxygen species (ROS), lipid peroxidation and concomitant depletion of thiols. However, it failed to increase the generation of mitochondrial superoxide, which minimally impacted on mitochondrial respiration and was corroborated by energy metabolism studies. Instead, ascaridole inhibited glycolysis of promastigotes, caused a loss in MMP, which translated into ATP depletion. In promastigotes, ascaridole enhanced annexin-V positivity and caused a cell cycle arrest at sub- G0/G1 phase. CONCLUSION: In summary, ascaridole displays its leishmanicidal activity possibly due to its ability to auto-generate free radicals following cleavage of its endoperoxide bridge that led to disruption of the redox homeostasis, inhibition of glycolysis and culminated in an apoptotic like cell death.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Parasitos , Trifosfato de Adenosina/farmacologia , Animais , Antiprotozoários/farmacologia , Monoterpenos Cicloexânicos , Glicólise , Leishmaniose Visceral/tratamento farmacológico , Metaloproteinases da Matriz/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Peróxidos
2.
Free Radic Res ; 55(3): 282-295, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34121571

RESUMO

Endoperoxides (EPs) like artemisinin following cleavage of their EP bridge can kill parasites via generation of carbon-centered radicals. As the presence of low molecular mass iron and/or heme is crucial, this study aimed to establish the influence of iron on the leishmanicidal action of artemisinin when present in differing amounts in culture media. In promastigotes cultured in Schneiders insect medium (SIM), that had a 8.0-fold higher amount of iron as compared to Medium 199 (M199), the impact of artemisinin on cell viability, redox status, labile iron pool (LIP), and Annexin-V positivity was evaluated. In SIM, the IC50 of artemisinin was 25.50-fold lower than M199, and in both media its cytotoxicity was decreased by the addition of hemin or following chelation of Fe2+ by Deferoxamine (DFO). In SIM vis-a-vis M199, artemisinin caused a greater redox imbalance which translated into a higher degree of externalization of phosphatidylserine and depletion of the LIP. The presence of a higher proportion of iron in SIM as compared to M199 significantly enhanced the cytotoxicity of artemisinin in Leishmania promastigotes, and was attributed to a higher degree of iron-mediated cleavage of its EP bridge that led to a higher generation of free radicals.


Assuntos
Anti-Infecciosos/uso terapêutico , Artemisininas/uso terapêutico , Ferro/metabolismo , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Anti-Infecciosos/farmacologia , Artemisininas/farmacologia , Meios de Cultura
3.
Biochem Pharmacol ; 173: 113737, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31786259

RESUMO

Endoperoxides (EPs) appear to be promising drug candidates against protozoal diseases, including malaria and leishmaniasis. Previous studies have shown that these drugs need an intracellular activation to exert their pharmacological potential. The efficiency of these drugs is linked to the extensive iron demand of these intracellular protozoal parasites. An essential step of the activation mechanism of these drugs is the formation of radicals in Leishmania. Iron is a known trigger for intracellular radical formation. However, the activation of EPs by low molecular iron or by heme iron may strongly depend on the structure of the EPs themselves. In this study, we focused on the activation of artemisinin (Art) in Leishmania tarentolae promastigotes (LtP) in comparison to reference compounds. Viability assays in different media in the presence of different iron sources (hemin/fetal calf serum) showed that IC50 values of Art in LtP were modulated by assay conditions, but overall were within the low micromolar range. Low temperature electron paramagnetic resonance (EPR) spectroscopy of LtP showed that Art shifted the redox state of the labile iron pool less than the EP ascaridole questioning its role as a major activator of Art in LtP. Based on the high reactivity of Art with hemin in previous biomimetic experiments, we focused on putative heme-metabolizing enzymes in Leishmania, which were so far not well described. Inhibitors of mammalian heme oxygenase (HO; tin and chromium mesoporphyrin) acted antagonistically to Art in LtP and boosted its IC50 value for several magnitudes. By inductively coupled plasma methods (ICP-OES, ICP-MS) we showed that these inhibitors do not block iron (heme) accumulation, but are taken up and act within LtP. These inhibitors blocked the conversion of hemin to bilirubin in LtP homogenates, suggesting that an HO-like enzyme activity in LtP exists. NADPH-dependent degradation of Art and hemin was highest in the small granule and microsomal fractions of LtP. Photometric measurements in the model Art/hemin demonstrated that hemin requires reduction to heme and that subsequently an Art/heme complex (λmax 474 nm) is formed. EPR spin-trapping in the system Art/hemin revealed that NADPH, ascorbate and cysteine are suitable reductants and finally activate Art to acyl-carbon centered radicals. These findings suggest that heme is a major activator of Art in LtP either via HO-like enzyme activities and/or chemical interaction of heme with Art.


Assuntos
Artemisininas/metabolismo , Heme/metabolismo , Leishmania/metabolismo , Esporos de Protozoários/metabolismo , Animais , Artemisininas/química , Artemisininas/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Radicais Livres/metabolismo , Heme/química , Heme Oxigenase (Desciclizante)/metabolismo , Ferro/metabolismo , Leishmania/citologia , Leishmania/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Oxirredução/efeitos dos fármacos , Peróxidos/química , Peróxidos/metabolismo , Peróxidos/farmacologia , Esporos de Protozoários/citologia , Esporos de Protozoários/efeitos dos fármacos
4.
Parasitol Res ; 118(1): 335-345, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30470927

RESUMO

Berberine chloride, a plant-derived isoquinoline alkaloid, has been demonstrated to have leishmanicidal activity, which is mediated by generation of a redox imbalance and depolarization of the mitochondrial membrane, resulting in a caspase-independent apoptotic-like cell death. However, its impact on mitochondrial function remains to be delineated and is the focus of this study. In UR6 promastigotes, berberine chloride demonstrated a dose-dependent increase in generation of reactive oxygen species and mitochondrial superoxide, depolarization of the mitochondrial membrane potential, a dose-dependent inhibition of mitochondrial complexes I-III and II-III, along with a substantial depletion of ATP, collectively suggesting inhibition of parasite mitochondria. Accordingly, the oxidative stress induced by berberine chloride resulting in an apoptotic-like cell death in Leishmania can be exploited as a potent chemotherapeutic strategy, mitochondria being a prime contributor.


Assuntos
Antiprotozoários/farmacologia , Alcaloides de Berberina/farmacologia , Leishmania/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Leishmania/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
5.
Parasitology ; 146(4): 511-520, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30392476

RESUMO

Endoperoxides kill malaria parasites via cleavage of their endoperoxide bridge by haem or iron, leading to generation of cytotoxic oxygen-centred radicals. In view of the Leishmania parasites having a relatively compromised anti-oxidant defense and high iron content, this study aims to establish the underlying mechanism(s) accounting for the apoptotic-like death of Leishmania promastigotes by artemisinin, an endoperoxide. The formation of reactive oxygen species was confirmed by flow cytometry and was accompanied by inhibition of mitochondrial complexes I-III and II-III. However, this did not translate into a generation of mitochondrial superoxide or decrease in oxygen consumption, indicating minimal impairment of the electron transport chain. Artemisinin caused depolarization of the mitochondrial membrane along with a substantial depletion of adenosine triphosphatase (ATP), but it was not accompanied by enhancement of ATP hydrolysis. Collectively, the endoperoxide-mediated radical formation by artemisinin in Leishmania promastigotes was the key step for triggering its antileishmanial activity, leading secondarily to mitochondrial dysfunction indicating that endoperoxides represent a promising therapeutic strategy against Leishmania worthy of pharmacological consideration.


Assuntos
Antiprotozoários/química , Artemisininas/química , Leishmania/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
6.
Molecules ; 23(7)2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996524

RESUMO

Leishmaniasis is a vector-borne disease caused by protozoal Leishmania. Because of resistance development against current drugs, new antileishmanial compounds are urgently needed. Endoperoxides (EPs) are successfully used in malaria therapy, and experimental evidence of their potential against leishmaniasis exists. Anthracene endoperoxides (AcEPs) have so far been only technically used and not explored for their leishmanicidal potential. This study verified the in vitro efficiency and mechanism of AcEPs against both Leishmania promastigotes and axenic amastigotes (L. tarentolae and L. donovani) as well as their toxicity in J774 macrophages. Additionally, the kinetics and radical products of AcEPs' reaction with iron, the formation of radicals by AcEPs in Leishmania, as well as the resulting impairment of parasite mitochondrial functions were studied. Using electron paramagnetic resonance combined with spin trapping, photometry, and fluorescence-based oximetry, AcEPs were demonstrated to (i) show antileishmanial activity in vitro at IC50 values in a low micromolar range, (ii) exhibit host cell toxicity in J774 macrophages, (iii) react rapidly with iron (II) resulting in the formation of oxygen- and carbon-centered radicals, (iv) produce carbon-centered radicals which could secondarily trigger superoxide radical formation in Leishmania, and (v) impair mitochondrial functions in Leishmania during parasite killing. Overall, the data of different AcEPs demonstrate that their structures besides the peroxo bridge strongly influence their activity and mechanism of their antileishmanial action.


Assuntos
Antracenos/metabolismo , Leishmania/metabolismo , Mitocôndrias/metabolismo , Peróxidos/metabolismo , Animais , Antracenos/química , Linhagem Celular , Sobrevivência Celular , Espectroscopia de Ressonância de Spin Eletrônica , Concentração Inibidora 50 , Ferro/farmacologia , Leishmania/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Peróxidos/química , Superóxidos/metabolismo
7.
Phytother Res ; 32(9): 1729-1740, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29672979

RESUMO

The antileishmanial activity of the essential oil (EO) from Chenopodium ambrosioides L. has been demonstrated in vitro and in animal models, attributed to the major components of the EO. This study focused on the effects of the three major EO compounds carvacrol, caryophyllene oxide (Caryo), and the antileishmanial endoperoxide ascaridole (Asc) on mitochondrial functions in Leishmania tarentolae promastigotes (LtP). EO and Caryo were able to partially inhibit the leishmanial electron transport chain, whereas other components failed to demonstrate a direct immediate effect. Caryo demonstrated inhibition of complex III activity in LtP and in isolated complex III from other species. The formation of superoxide radicals was studied in Leishmania by electron spin resonance spectroscopy in the presence of iron chelators wherein selected compounds failed to trigger a significant immediate additional superoxide production in LtP. However, upon prolonged incubation of Leishmania with Asc and especially in the absence of iron chelators (allowing the activation of Asc), an increased superoxide radical production and significant impairment of mitochondrial coupling in Leishmania was observed. Prolonged incubation with all EO components resulted in thiol depletion. Taken together, the major components of EO mediate their leishmanicidal activity via different mitochondrial targets and time profiles. Further studies are required to elucidate possible synergistic effects of carvacrol and Asc and the influence of minor compounds.


Assuntos
Chenopodium ambrosioides/química , Leishmania/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Óleos Voláteis/farmacologia , Animais , Antiprotozoários/farmacologia , Bovinos , Monoterpenos Cicloexânicos , Cimenos , Monoterpenos/farmacologia , Peróxidos/farmacologia , Sesquiterpenos Policíclicos , Saccharomyces cerevisiae , Sesquiterpenos/farmacologia , Superóxidos
8.
Free Radic Res ; 51(11-12): 986-994, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29182456

RESUMO

Vitiligo is an autoimmune depigmenting skin disease characterised by loss of melanocytes wherein oxidative stress is proposed to be the initial triggering factor with subsequent immune dysregulation. This study aimed to evaluate the relationship, if any, between the generation of reactive oxygen species (ROS), markers of oxidative damage and circulating cytokines in patients with active vitiligo. The generation of ROS in erythrocytes and neutrophils was significantly higher in patients with active vitiligo than healthy controls. Alongside, markers of oxidative stress-mediated damage namely lipid peroxidation, DNA damage and protein carbonylation were evaluated. Patients with active vitiligo demonstrated increased lipid and DNA damage but minimal protein damage. There was a significant decline in the free radical scavenging capacity of active vitiligo cases. A positive correlation existed between baseline levels of ROS and lipid peroxidation as also DNA damage. Patients with active vitiligo demonstrated an increase in several proinflammatory (IL-6, TNF-α, IL-1ß, IFN-γ and IL-8) and some anti-inflammatory/immunoregulatory (IL-5 and IL-10) cytokines. Importantly, the levels of IFN-γ and IL-10 consistently correlated with the generation of ROS, markers of damage and their free radical scavenging capacity. Taken together, patients with active vitiligo demonstrated an enhanced generation of ROS in erythrocytes and neutrophils which mediated lipid peroxidation, DNA damage and coupled with a decline in their antioxidant capacity created a pro-oxidant milieu that favoured tissue damage and potential generation of neoantigens, accounting for disease progression.


Assuntos
Citocinas/metabolismo , Estresse Oxidativo , Vitiligo/genética , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Vitiligo/metabolismo , Vitiligo/patologia
9.
J Pharmacol Exp Ther ; 360(2): 249-259, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27856937

RESUMO

Rheumatoid arthritis (RA), an inflammatory autoimmune disorder, is characterized by synovial hyperplasia and bony destruction. The pathogenesis of RA includes redox dysregulation, concomitant with increased levels of proinflammatory mediators. As the ability of allylpyrocatechol (APC), a phytoconstituent of Piper betle leaves, to alleviate oxidative stress has been demonstrated in patients with RA, its antiarthritic activity was evaluated in an animal model of arthritis, and the underlying mechanism(s) of action clarified. The animal model was established by immunizing rats with bovine collagen type II (CII) followed by lipopolysaccharide, along with a booster dose of CII on day 15. Rats were treated with APC or methotrexate (MTX) from days 11 to 27, when paw edema, radiography, histopathology, and markers of inflammation were evaluated. The pro/antiinflammatory signaling pathways were studied in a RAW264.7 macrophage cell line. Allylpyrocatechol (APC) prevented the progression of arthritis as was evident from the reduction in paw edema, and attenuation of damage to bones and cartilage shown by radiography and histopathology. Additionally, there was reduction in the levels of proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] and restoration of the redox balance. Importantly, MTX ameliorated the features of arthritis but not the associated oxidative stress. In RAW264.7, APC inhibited generation of nitric oxide and proinflammatory cytokines (TNF-α, IL-6, and IL-12p40), and modulated the phosphorylation of proinflammatory (extracellular signal-regulated kinase 1/2, stress-activated protein kinase/c-Jun N-terminal protein kinase, and Janus kinase/signal transducers and activators of transcription) and cytoprotective (nuclear factor erythroid 2-related factor 2, heme oxygenase-1) signaling pathways. Taken together, APC controlled the development of arthritis, possibly via modulation of signaling pathways, and deserves further consideration as a therapy for RA.


Assuntos
Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Catecóis/farmacologia , Colágeno/efeitos adversos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Catecóis/uso terapêutico , Bovinos , Progressão da Doença , Feminino , Heme Oxigenase-1/metabolismo , Mediadores da Inflamação/metabolismo , Janus Quinases/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Células RAW 264.7 , Ratos , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo
10.
Int Immunopharmacol ; 39: 34-40, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27398613

RESUMO

Intrinsically cancer cells have higher basal levels of reactive oxygen species (ROS), which when augmented by pro-oxidants such as Malabaricone-A (MAL-A) triggers apoptotic cell death, secondary to 'turning on' of the apoptosis related cell signaling pathways. The effects of MAL-A upon key inflammation related signaling molecules were evaluated by western blotting in U937, a histiocytic lymphoma derived cell line. The impact of inhibitors of the pro-apoptotic MAPK and anti-apoptotic PI3K/AKT signaling pathways upon MAL-A induced cytotoxicity and generation of ROS was evaluated by a cell viability assay and flow cytometry respectively in two hematopoietic cell lines, U937 and MOLT3. MAL-A enhanced phosphorylation of the components of the pro-apoptotic pathway, namely ASK1, p38 and JNK. Alongside, MAL-A decreased the phosphorylation of AKT and mTOR. The cytotoxicity of MAL-A was attenuated by inhibitors of p38 and JNK, whereas its cytotoxic potential was enhanced in the presence of a PI3K/AKT inhibitor. Similarly, MAL-A mediated generation of ROS was decreased by inhibitors of p38MAPK and JNK, whereas the PI3K/AKT inhibitor potentiated its generation of ROS. Taken together, MAL-A mediated its cytotoxicity by enhanced generation of ROS via modulation of the apoptosis related cellular signaling pathways and tilting the balance towards a pro-apoptotic scenario. This was achieved via an up-regulation of MAPK (p38 and JNK) along with down-regulation of the PI3K/AKT/mTOR pathway indicating that manipulation of these pathways by compounds such as MAL-A are promising therapeutic targets, worthy of future pharmacological consideration.


Assuntos
Apoptose , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Oxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Resorcinóis/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , MAP Quinase Quinase 4/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Células U937 , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Phytomedicine ; 22(7-8): 713-23, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26141757

RESUMO

PURPOSE: The 'two-faced' character of reactive oxygen species (ROS) plays an important role in cancer biology by acting as secondary messengers in intracellular signaling cascades, enhancing cell proliferation and survival, thereby sustaining the oncogenic phenotype. Conversely, enhanced generation of ROS can trigger an oxidative assault leading to a redox imbalance translating into an apoptotic cell death. Intrinsically, cancer cells have higher basal levels of ROS which if supplemented by additional oxidative insult by pro-oxidants can be cytotoxic, an example being Malabaricone-A (MAL-A). MAL-A is a plant derived diarylnonanoid, purified from fruit rind of the plant Myristica malabarica whose anti-cancer activity has been demonstrated in leukemic cell lines, the modality of cell death being apoptosis. This study aimed to compare the degree of effectiveness of MAL-A in leukemic vs. solid tumor cell lines. METHODS: The cytotoxicity of MAL-A was evaluated by the MTS-PMS cell viability assay in leukemic cell lines (MOLT3, K562 and HL-60) and compared with solid tumor cell lines (MCF7, A549 and HepG2); further studies then proceeded with MOLT3 vs. MCF7 and A549. The contribution of redox imbalance in MAL-A induced cytotoxicity was confirmed by pre-incubating cells with an antioxidant, N-acetyl-L-cysteine (NAC) or a thiol depletor, buthionine sulfoximine (BSO). MAL-A induced redox imbalance was quantitated by flow cytometry, by measuring the generation of ROS and levels of non protein thiols using dichlorofluorescein diacetate (CM-H2DCFDA) and 5-chloromethylfluorescein diacetate (CMFDA) respectively. The activities of glutathione peroxidase (GPx), superoxide dismutase, catalase (CAT), NAD(P)H dehydrogenase (quinone 1) NQO1 and glutathione-S-transferase GST were measured spectrophotometrically. The mitochondrial involvement of MAL-A induced cell death was measured by evaluation of cardiolipin peroxidation using 10-N-nonyl acridine orange (NAO), transition pore activity with calcein-AM, while the mitochondrial transmembrane electrochemical gradient (∆ψ(m)) was measured by JC-1, fluorescence being acquired in a flow cytometer. The apoptotic mode of cell death was evaluated by double staining with annexin V-FITC and propidium iodide (PI), cell cycle analysis by flow cytometry and caspase-3 activity spectrophotometrically. The expression of Nrf2 and HO-1 was examined by western blotting. RESULTS: MAL-A demonstrated a higher degree of cytotoxicity in three leukemic cell lines whose IC50 ranged from 12.70 ± 0.10 to 18.10 ± 0.95 µg/ml, whereas in three solid tumor cell lines, the IC50 ranged from 28.10 ± 0.58 to 55.26 ± 5.90 µg/ml. This higher degree of cytotoxicity in MOLT3, a leukemic cell line was due to a higher induction of redox imbalance, evident by both an increased generation of ROS and concomitant depletion of thiols. This was confirmed by pre-incubation with NAC and BSO, wherein NAC decreased MAL-A induced cytotoxicity by 2.04 fold while BSO enhanced MAL-A cytotoxicity and decreased the IC50 by 5.60 fold. However, in solid tumor cell lines (MCF7 and A549), NAC minimally decreased MAL-A induced cytotoxicity, and BSO increased the IC50 by 1.96 and 2.39 fold respectively. Furthermore, the generation of ROS by MAL-A increased maximally in MOLT3 as the fluorescence increased from 44.28 ± 7.85 to 273.99 ± 32.78, and to a lesser degree in solid tumor cell lines, MCF7 (44.28 ± 14.89 to 207.97 ± 70.64) and A549 (37.87 ± 3.24 to 147.12 ± 38.53). In all three cell lines there was a concomitant depletion of thiols as in MOLT3, the GMFC decreased from 340.65 ± 60.39 to 62.67 ± 11.32, in MCF7 (277.82 ± 50.32 to 100.39 ± 31.93) and in A549 (274.05 ± 59.13 to 83.15 ± 21.43). In MOLT3 as compared to MCF7 and A549, decrease in the activities of GPx, CAT, NQO1 and GST was substantially greater. In all cell lines, the MAL-A induced redox imbalance translated into triggering of initial mitochondrial apoptotic events. Here again, MAL-A induced a higher degree of cardiolipin peroxidation in MOLT3 (67.01%) than MCF7 and A549 (29.15% and 44.30%), as also down regulated the mitochondrial transition pore activity from baseline to a higher extent, GMFC being 48.05 ± 2.37 to 10.70 ± 3.97 (MOLT3), 43.55 ± 3.36 to 15.36 ± 0.60 (MCF7) and 39.58 ± 0.4 to 12.65 ± 1.56 (A549). Perturbation of mitochondrial membrane potential evident by a decrease in the ratio of red/green (J-aggregates/monomers) was 134 fold (14.73/0.11) in MOLT3, 45 fold in MCF7 (20.72/0.46) and 34 fold in A549 (22.01/0.64). The extent of apoptosis using a similar concentration of MAL-A was maximal in MOLT3, wherein a 105 fold increase in annexin V binding was evident (0.83 ± 0.51 to 87.08 ± 9.85%) whereas it increased by 43.11 fold in MCF7 (0.69 ± 0.30 to 29.75 ± 11.79%) and 47.52 fold in A549 (0.61 ± 0.31 to 28.99 ± 17.21%). MAL-A induced apoptosis was also associated with a higher degree of caspase-3 activity in MOLT3 vs. MCF7 or A549 which translated into halting of cell cycle progression, evident by an increment in the sub-G0/G1 population [19.26 fold in MOLT3 (0.95 ± 0.45 vs. 18.30 ± 1.90%), 11.01 fold in MCF7 (0.97 ± 0.37 vs. 10.68 ± 0.69%) and 8.58 fold in A549 (1.06 ± 0.45 vs. 9.10 ± 1.05%)]. MAL-A effectively inhibited Nrf2 and HO-1, more prominently in MOLT3. Furthermore, the decreased expression of Nrf2 in MOLT3 correlated with the decreased activities of NQO1 and GST, suggesting that targeting of the Nrf2 anti-oxidant pathway could be considered. CONCLUSION: Taken together, MAL-A a pro-oxidant compound is likely to be more effective in leukemias, meriting further pharmacological consideration.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Resorcinóis/farmacologia , Apoptose/efeitos dos fármacos , Células HL-60/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos , Humanos , Células K562/efeitos dos fármacos , Células MCF-7/efeitos dos fármacos , Myristicaceae/química , Oxirredução
12.
Trans R Soc Trop Med Hyg ; 106(11): 668-76, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22920931

RESUMO

Post kala-azar dermal leishmaniasis (PKDL), a dermal sequel of visceral leishmaniasis presents with macular or polymorphic lesions. As immunological variations between these two forms have not been delineated, we evaluated levels of antileishmanial total Ig, IgG and its subclasses, IgM, IgE, IgG avidity, cytokines IL-10, IL-4, IL-13 and expression of CD19. The levels of Ig and IgG in polymorphic PKDL were higher than macular PKDL, while significant curtailment in levels of Ig, IgM and IgG following treatment was evident only in polymorphic PKDL. With regard to IgG subclasses, IgG1 and IgG3 were significantly raised in polymorphic PKDL, whereas in macular PKDL only IgG1 was elevated; treatment decreased levels of IgG1, IgG2 and IgG3 only in polymorphic PKDL; IgE levels were raised in both groups but no marked alterations occurred following treatment. The avidity of IgG was higher in polymorphic PKDL and correlated with duration of disease. IL-10 was higher in polymorphic PKDL and decreased significantly after treatment, whereas in macular PKDL IL-4 predominated. Taken together, in PKDL the humoral immune response was greater in the polymorphic variant than the macular form suggesting that serological markers may have a role in monitoring polymorphic PKDL.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/sangue , Linfócitos T CD8-Positivos/metabolismo , Imunoglobulinas/sangue , Interleucinas/sangue , Leishmania donovani/isolamento & purificação , Leishmaniose Cutânea/imunologia , Leishmaniose Visceral/imunologia , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Criança , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Imunidade Celular , Imunidade Humoral , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Índia/epidemiologia , Interleucina-10/sangue , Interleucina-13/sangue , Interleucina-4/sangue , Leishmania donovani/imunologia , Leishmaniose Cutânea/epidemiologia , Leishmaniose Visceral/epidemiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA