Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Elife ; 102021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34970966

RESUMO

Activation of T cells requires a rapid surge in cellular protein synthesis. However, the role of translation initiation in the early induction of specific genes remains unclear. Here, we show human translation initiation factor eIF3 interacts with select immune system related mRNAs including those encoding the T cell receptor (TCR) subunits TCRA and TCRB. Binding of eIF3 to the TCRA and TCRB mRNA 3'-untranslated regions (3'-UTRs) depends on CD28 coreceptor signaling and regulates a burst in TCR translation required for robust T cell activation. Use of the TCRA or TCRB 3'-UTRs to control expression of an anti-CD19 chimeric antigen receptor (CAR) improves the ability of CAR-T cells to kill tumor cells in vitro. These results identify a new mechanism of eIF3-mediated translation control that can aid T cell engineering for immunotherapy applications.


Assuntos
Fator de Iniciação 3 em Eucariotos/genética , Ativação Linfocitária/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Linhagem Celular , Fator de Iniciação 3 em Eucariotos/metabolismo , Humanos
3.
Nucleic Acids Res ; 45(11): 6628-6643, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28520979

RESUMO

Members of the DEAD-box family are often multifunctional proteins involved in several RNA transactions. Among them, yeast Saccharomyces cerevisiae Mss116 participates in mitochondrial intron splicing and, under cold stress, also in mitochondrial transcription elongation. Here, we show that Mss116 interacts with the mitoribosome assembly factor Mrh4, is required for efficient mitoribosome biogenesis, and consequently, maintenance of the overall mitochondrial protein synthesis rate. Additionally, Mss116 is required for efficient COX1 mRNA translation initiation and elongation. Mss116 interacts with a COX1 mRNA-specific translational activator, the pentatricopeptide repeat protein Pet309. In the absence of Mss116, Pet309 is virtually absent, and although mitoribosome loading onto COX1 mRNA can occur, activation of COX1 mRNA translation is impaired. Mutations abolishing the helicase activity of Mss116 do not prevent the interaction of Mss116 with Pet309 but also do not allow COX1 mRNA translation. We propose that Pet309 acts as an adaptor protein for Mss116 action on the COX1 mRNA 5΄-UTR to promote efficient Cox1 synthesis. Overall, we conclude that the different functions of Mss116 in the biogenesis and functioning of the mitochondrial translation machinery depend on Mss116 interplay with its protein cofactors.


Assuntos
RNA Helicases DEAD-box/fisiologia , Ribossomos Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Regiões 5' não Traduzidas , Sequência de Bases , Sítios de Ligação , RNA Helicases DEAD-box/metabolismo , DNA Fúngico/genética , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Iniciação Traducional da Cadeia Peptídica , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Cell Cycle ; 14(14): 2226-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26030272

RESUMO

The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health.


Assuntos
Doenças Mitocondriais/patologia , Ribossomos Mitocondriais/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , MicroRNAs/metabolismo , Doenças Mitocondriais/metabolismo , Ribossomos Mitocondriais/química , Estrutura Quaternária de Proteína , RNA Helicases/metabolismo , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo
5.
Cell Metab ; 18(5): 712-25, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24206665

RESUMO

Proteins in a cell are universally synthesized by ribosomes. Mitochondria contain their own ribosomes, which specialize in the synthesis of a handful of proteins required for oxidative phosphorylation. The pathway of mitoribosomal biogenesis and factors involved are poorly characterized. An example is the DEAD box proteins, widely known to participate in the biogenesis of bacterial and cytoplasmic eukaryotic ribosomes as either RNA helicases or RNA chaperones, whose mitochondrial counterparts remain completely unknown. Here, we have identified the Saccharomyces cerevisiae mitochondrial DEAD box protein Mrh4 as essential for large mitoribosome subunit biogenesis. Mrh4 interacts with the 21S rRNA, mitoribosome subassemblies, and fully assembled mitoribosomes. In the absence of Mrh4, the 21S rRNA is matured and forms part of a large on-pathway assembly intermediate missing proteins Mrpl16 and Mrpl39. We conclude that Mrh4 plays an essential role during the late stages of mitoribosome assembly by promoting remodeling of the 21S rRNA-protein interactions.


Assuntos
RNA Helicases DEAD-box/metabolismo , Mitocôndrias/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sequência Conservada , RNA Helicases DEAD-box/química , DNA Mitocondrial/genética , Humanos , Íntrons/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/biossíntese , Dados de Sequência Molecular , Mutação/genética , Fosforilação Oxidativa , Ligação Proteica/genética , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Ribonucleoproteínas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA