Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Mater ; 35(38): e2302114, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37289574

RESUMO

General-purpose quantum computation and quantum simulation require multi-qubit architectures with precisely defined, robust interqubit interactions, coupled with local addressability. This is an unsolved challenge, primarily due to scalability issues. These issues often derive from poor control over interqubit interactions. Molecular systems are promising materials for the realization of large-scale quantum architectures, due to their high degree of positionability and the possibility to precisely tailor interqubit interactions. The simplest quantum architecture is the two-qubit system, with which quantum gate operations can be implemented. To be viable, a two-qubit system must possess long coherence times, the interqubit interaction must be well defined and the two qubits must also be addressable individually within the same quantum manipulation sequence. Here results are presented on the investigation of the spin dynamics of chlorinated triphenylmethyl organic radicals, in particular the perchlorotriphenylmethyl (PTM) radical, a mono-functionalized PTM, and a biradical PTM dimer. Extraordinarily long ensemble coherence times up to 148 µs are found at all temperatures below 100 K. Two-qubit and, importantly, individual qubit addressability in the biradical system are demonstrated. These results underline the potential of molecular materials for the development of quantum architectures.

2.
ACS Appl Mater Interfaces ; 15(3): 4635-4642, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36642951

RESUMO

The preparation of monolayers based on an organic radical and its diamagnetic counterpart has been pursued on hydrogen-terminated silicon surfaces. The functional monolayers have been investigated as solid-state metal/monolayer/semiconductor (MmS) junctions showing a characteristic diode behavior which is tuned by the electronic characteristics of the organic molecule. The eutectic gallium-indium liquid metal is used as a top electrode to perform the transport measurements and the results clearly indicate that the SOMO-SUMO molecular orbitals impact the device performance. The junction incorporating the radical shows an almost two orders of magnitude higher rectification ratio (R(|J1V/J-1V|) = 104.04) in comparison with the nonradical one (R(|J1V/J-1V|) = 102.30). The high stability of the fabricated MmS allows the system to be interrogated under irradiation, evidencing that at the wavelength where the photon energy is close to the band gap of the radical there is a clear enhancement of the photoresponse. This is translated into an increase of the photosensitivity (Sph) value from 68.7 to 269.0 mA/W for the nonradical and radical based systems, respectively.

3.
J Phys Chem Lett ; 12(26): 6159-6164, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34184906

RESUMO

Two redox and magnetically active perchlorotriphenylmethyl (•PTM) radical units have been connected as end-capping groups to a bis(phenylene)diyne chain through vinylene linkers. Negative and positive charged species have been generated, and the influence of the bridge on their stabilization is discussed. Partial reduction of the electron-withdrawing •PTM radicals results in a class-II mixed-valence system with the negative charge located on the terminal PTM units, proving the efficiency of the conjugated chain for the electron transport between the two terminal sites. Counterintuitively, the oxidation process does not occur along the electron-rich bridge but on the vinylene units. The •PTM radicals play a key role in the stabilization of the cationic species, promoting the generation of quinoidal ring segments.

4.
ACS Nano ; 15(3): 5147-5157, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33600164

RESUMO

The functionalization of single-walled carbon nanotubes (SWCNTs) with luminescent sp3 defects has greatly improved their performance in applications such as quantum light sources and bioimaging. Here, we report the covalent functionalization of purified semiconducting SWCNTs with stable organic radicals (perchlorotriphenylmethyl, PTM) carrying a net spin. This model system allows us to use the near-infrared photoluminescence arising from the defect-localized exciton as a highly sensitive probe for the short-range interaction between the PTM radical and the SWCNT. Our results point toward an increased triplet exciton population due to radical-enhanced intersystem crossing, which could provide access to the elusive triplet manifold in SWCNTs. Furthermore, this simple synthetic route to spin-labeled defects could enable magnetic resonance studies complementary to in vivo fluorescence imaging with functionalized SWCNTs and facilitate the scalable fabrication of spintronic devices with magnetically switchable charge transport.


Assuntos
Nanotubos de Carbono , Luminescência
5.
Chem Commun (Camb) ; 56(91): 14211-14214, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33112297

RESUMO

A push-pull-functionalized stilbene has been prepared, with an electroactive perchlorotriphenylmethyl (PTM˙) radical and dimethylamine units as electron-withdrawing and -donating moieties, respectively, showing an electrocatalytic redox-induced Z→E isomerization where the open-shell nature of PTM˙ plays a key role in the isomerization ocurrance.

6.
Chem Sci ; 11(2): 516-524, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32190271

RESUMO

The incorporation of terminal alkynes into the chemical structure of persistent organic perchlorotriphenylmethyl (PTM) radicals provides new chemical tools to expand their potential applications. In this work, this is demonstrated by the chemical functionalization of two types of substrates, hydrogenated SiO2-free silicon (Si-H) and gold, and, by exploiting the click chemistry, scarcely used with organic radicals, to synthesise multifunctional systems. On one hand, the one-step functionalization of Si-H allows a light-triggered capacitance switch to be successfully achieved under electrochemical conditions. On the other hand, the click reaction between the alkyne-terminated PTM radical and a ferrocene azide derivative, used here as a model azide system, leads to a multistate electrochemical switch. The successful post-surface modification makes the self-assembled monolayers reported here an appealing platform to synthesise multifunctional systems grafted on surfaces.

7.
Chem Sci ; 11(34): 9162-9172, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34123165

RESUMO

We have investigated the radical functionalization of gold surfaces with a derivative of the perchlorotriphenylmethyl (PTM) radical using two methods: by chemisorption from the radical solution and by on-surface chemical derivation from a precursor. We have investigated the obtained self-assembled monolayers by photon-energy dependent X-ray photoelectron spectroscopy. Our results show that the molecules were successfully anchored on the surfaces. We have used a robust method that can be applied to a variety of materials to assess the stability of the functionalized interface. The monolayers are characterized by air and X-ray beam stability unprecedented for films of organic radicals. Over very long X-ray beam exposure we observed a dynamic nature of the radical-Au complex. The results clearly indicate that (mono)layers of PTM radical derivatives have the necessary stability to withstand device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA