Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(10): 4263-4276, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38728062

RESUMO

In this work, we present PharmaCore: a new, completely automatic workflow aimed at generating three-dimensional (3D) structure-based pharmacophore models toward any target of interest. The proposed approach relies on using cocrystallized ligands to create the input files for generating the pharmacophore hypotheses, integrating not only the three-dimensional structural information on the ligand but also data concerning the binding mode of these molecules put in the protein cavity. We developed a Python library that, starting from the specific UniProt ID of the protein under investigation as the only element that requires user intervention, subsequently collects and aligns the corresponding structures bearing a known ligand in a fully automated fashion, bringing them all into the same coordinate system. The protocol includes a final phase in which the aligned small molecules are used to produce the pharmacophore hypotheses directly onto the protein structure using a specific software, e.g., Phase (Schrödinger LLC). To validate the entire procedure and highlight the possible applications in the field of drug discovery and repositioning, we first generated pharmacophores for soluble epoxide hydrolase (sEH) and compared with already-published ones. Then, we reproduced the binding profile of a reported selective binder of ATAD2 bromodomain (AM879), testing it against a panel of 1741 pharmacophores related to 16 epigenetic proteins and automatically generated with PharmaCore, finally disclosing putative unprecedented off-targets. The computational predictions were successfully validated with AlphaScreen assays, highlighting the applicability of the proposed workflow in drug discovery and repositioning. Finally, the process was also validated on tankyrase 2 and SARS-CoV-2 MPro, confirming the robustness of PharmaCore.


Assuntos
Modelos Moleculares , Ligantes , Descoberta de Drogas/métodos , Proteínas/química , Proteínas/metabolismo , Conformação Proteica , Humanos , Ligação Proteica , Epóxido Hidrolases/química , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , SARS-CoV-2/efeitos dos fármacos , Simulação de Acoplamento Molecular , Automação , Software , Farmacóforo
2.
Antioxidants (Basel) ; 12(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38001833

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation promotes the expression of antioxidant enzymes in response to rising oxidative stress, resulting in reactive oxygen species (ROS) detoxification and playing a central role in the maintenance of intracellular redox homeostasis and regulation of inflammation. Moreover, the biological effects of Nrf2 pathway activation contribute to reducing apoptosis and enhancing cell survival. The activity of Nrf2 is negatively regulated by Kelch-like ECH-associated protein 1 (Keap1). Prompted by the recent results reporting the impact of xanthone metabolites on oxidative stress, cancer, and inflammation, the antioxidant properties of xanthones isolated from Garcinia mangostana (γ-mangostin, α-mangostin, 8-deoxygartanin, demethylcalabaxanthone, garcinone D) were assessed. In particular, the capability of these natural products to disrupt the interaction between Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2), triggering the activation of the Nrf2-mediated pathway, was evaluated using molecular docking experiments and in vitro tests. The modulation of some key Nrf2-related mediators like glutathione (GSH) and lactate dehydrogenase (LDH) to highlight a possible direct antioxidant effect was investigated. Among the tested compounds, demethylcalabaxanthone showed an indirect antioxidant effect, as corroborated by a Western blot assay, displaying a significant increase in the translocated protein upon its administration.

3.
Bioorg Med Chem ; 93: 117444, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611334

RESUMO

Herein, we report the development of a new series of histone deacetylase inhibitors (HDACi) containing a 2-substituted 1,5-benzothiazepine scaffold. First, a virtual combinatorial library (∼1.6 × 103 items) was built according to a convenient synthetic route, and then it was submitted to molecular docking experiments on seven HDACs isoforms belonging to classes I and II. Integrated computational filters were used to select the most promising ones that were synthesized through an optimized approach, also amenable to generating both racemic and enantioenriched benzothiazepine-based derivatives. The obtained compounds showed potent HDAC inhibitory activity, especially those containing the sulphone moiety, endowed with IC50 in the nanomolar range. In addition, in vitro outcomes of our synthesized compounds demonstrated a cytotoxic effect on U937 and HCT116 cell lines and an arrest in the G2/M phase (13 ≤ IC50 ≤ 18 µM). Finally, Western blot analyses outlined the modulation of the histone acetyl markers such as H3K9/14, acetyl-tubulin, and the apoptotic indicator p21 in both cancer cell lines, disclosing a good HDAC inhibitor activity exerted by the designed items. Given the key role of HDACs in many cellular pathways, which makes these enzymes appealing and "hot" drug targets, our findings highlighted the importance of these 2-substituted 1,5-benzothiazepine-based compounds (both in the reduced and oxidized version) for the development of novel epidrugs.


Assuntos
Inibidores de Histona Desacetilases , Leucemia Mieloide Aguda , Humanos , Inibidores de Histona Desacetilases/farmacologia , Simulação de Acoplamento Molecular , Bloqueadores dos Canais de Cálcio , Células HCT116
4.
Bioorg Med Chem Lett ; 83: 129171, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739998

RESUMO

The use of computational techniques in the early stages of drug discovery has recently experienced a boost, especially in the target identification step. Finding the biological partner(s) for new or existing synthetic and/or natural compounds by "wet" approaches may be challenging; therefore, preliminary in silico screening is even more recommended. After a brief overview of some of the most known target identification techniques, recent advances in structure-based computational approaches for target identification are reported in this digest, focusing on Inverse Virtual Screening and its recent applications. Moreover, future perspectives concerning the use of such methodologies, coupled or not with other approaches, are analyzed.


Assuntos
Biologia Computacional , Descoberta de Drogas , Descoberta de Drogas/métodos
5.
Plants (Basel) ; 11(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807623

RESUMO

Cannabis sativa L. is a plant belonging to the Cannabaceae family, cultivated for its psychoactive cannabinoid (Δ9-THC) concentration or for its fiber and nutrient content in industrial use. Industrial hemp shows a low Δ9-THC level and is a valuable source of phytochemicals, mainly represented by cannabinoids, flavones, terpenes, and alkaloids, with health-promoting effects. In the present study, we investigated the phytochemical composition of leaves of the industrial hemp cultivar Futura 75, a monoecious cultivar commercially used for food preparations or cosmetic purposes. Leaves are generally discarded, and represent waste products. We analyzed the methanol extract of Futura 75 leaves by HPLC and NMR spectroscopy and the essential oil by GC-MS. In addition, in order to compare the chemical constituents, we prepared the water infusion. One new cannabinoid derivative (1) and seven known components, namely, cannabidiol (2), cannabidiolic acid (3), ß-cannabispirol (4), ß-cannabispirol (5), canniprene (6), cannabiripsol (7), and cannflavin B (8) were identified. The content of CBD was highest in all preparations. In addition, we present the outcomes of a computational study focused on elucidating the role of 2α-hydroxy-Δ3,7-cannabitriol (1), CBD (2), and CBDA (3) in inflammation and thrombogenesis.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35692577

RESUMO

Introduction: Lichens, due to the presence of own secondary metabolites such as depsidones and depsides, became a promising source of health-promoting organisms with pharmacological activities. However, lichens and their active compounds have been much less studied. Therefore, the present study aims to evaluate for the first time the antioxidant capacity and enzyme inhibitory activities of 14 lichen extracts belonging to cetrarioid clade in order to identify new natural products with potential pharmacological activity. Materials and Methods: In this study, an integrated strategy was applied combining multivariate statistical analysis (principal component analysis and hierarchical cluster analysis), phytochemical identification, activity evaluation (in vitro battery of antioxidant assays FRAP, DPPH, and ORAC), and enzyme inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and molecular profiling with in silico docking studies of the most promising secondary metabolites. Results. Among fourteen lichen samples, Dactylina arctica stands out for its higher antioxidant capacities, followed by Nephromopsis stracheyi, Tuckermannopsis americana, Vulpicida pinastri, and Asahinea scholanderi. Moreover, Asahinea scholanderi and Cetraria cucullata extracts were the best inhibitors of AChE and BuChE. The major secondary metabolites identified by HPLC were alectoronic acid and α-collatolic acid for Asahinea scholanderi and usnic acid and protolichesterinic acid for Cetraria cucullata. Molecular docking studies revealed that alectoronic acid exhibited the strongest binding affinity with both AChE and BuChE with and without water molecules. Conclusions: Our results concluded that these species could be effective in the treatment of neurodegenerative diseases, being mandatory further investigation in cell culture and in vivo models.

7.
Biomolecules ; 12(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-35053247

RESUMO

Tanshinone IIA (TIIA) and cryptotanshinone (CRY) from Salvia miltiorrhiza Bunge were investigated for their inhibitory activity against the cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1)/endothelial prostaglandin 3 (EP3) pathway using in silico, in vitro, in vivo, and ex vivo assays. From the analysis of the docking poses, both diterpenoids were able to interact significantly with COX-2, 5-lipoxygenase (5-LO), platelet-activating factor receptor (PAFR), and mPGES-1. This evidence was further corroborated by data obtained from a cell-free assay, where CRY displayed a significant inhibitory potency against mPGES-1 (IC50 = 1.9 ± 0.4 µM) and 5-LO (IC50 = 7.1 µM), while TIIA showed no relevant inhibition of these targets. This was consistent with their activity to increase mice bleeding time (CRY: 2.44 ± 0.13 min, p ≤ 0.001; TIIA: 2.07 ± 0.17 min p ≤ 0.01) and with the capability to modulate mouse clot retraction (CRY: 0.048 ± 0.011 g, p ≤ 0.01; TIIA: 0.068 ± 0.009 g, p ≤ 0.05). For the first time, our results show that TIIA and, in particular, CRY are able to interact significantly with the key proteins involved not only in the onset of inflammation but also in platelet activity (and hyper-reactivity). Future preclinical and clinical investigations, together with this evidence, could provide the scientific basis to consider these compounds as an alternative therapeutic approach for thrombotic- and thromboembolic-based diseases.


Assuntos
Salvia miltiorrhiza , Abietanos , Animais , Ciclo-Oxigenase 2 , Camundongos , Fenantrenos , Prostaglandina-E Sintases , Prostaglandinas
8.
Molecules ; 26(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34885774

RESUMO

The estimation of the binding of a set of molecules against BRD9 protein was carried out through an in silico molecular dynamics-driven exhaustive analysis to guide the identification of potential novel ligands. Starting from eight crystal structures of this protein co-complexed with known binders and one apo form, we conducted an exhaustive molecular docking/molecular dynamics (MD) investigation. To balance accuracy and an affordable calculation time, the systems were simulated for 100 ns in explicit solvent. Moreover, one complex was simulated for 1 µs to assess the influence of simulation time on the results. A set of MD-derived parameters was computed and compared with molecular docking-derived and experimental data. MM-GBSA and the per-residue interaction energy emerged as the main indicators for the good interaction between the specific binder and the protein counterpart. To assess the performance of the proposed analysis workflow, we tested six molecules featuring different binding affinities for BRD9, obtaining promising outcomes. Further insights were reported to highlight the influence of the starting structure on the molecular dynamics simulations evolution. The data confirmed that a ranking of BRD9 binders using key parameters arising from molecular dynamics is advisable to discard poor ligands before moving on with the synthesis and the biological tests.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fatores de Transcrição/química , Aminoácidos/química , Cristalização , Análise de Dados , Ligantes , Ligação Proteica , Termodinâmica
9.
Biomolecules ; 11(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34680124

RESUMO

Natural products have been the main source of bioactive molecules for centuries. We tested the biological profile of two metabolites extracted from Gentiana lutea L. by means of computational techniques and in vitro assays. The two molecules (loganic acid and gentiopicroside) were tested in silico using an innovative technique, named Inverse Virtual Screening (IVS), to highlight putative partners among a panel of proteins involved in inflammation and cancer events. A positive binding with cyclooxygenase-2 (COX-2), alpha-1-antichymotrypsin, and alpha-1-acid glycoprotein emerged from the computational experiments and the outcomes from the promising interaction with COX-2 were confirmed by Western blot, highlighting the reliability of IVS in the field of the natural products.


Assuntos
Biologia Computacional , Gentiana/metabolismo , Glucosídeos Iridoides/farmacologia , Iridoides/farmacologia , Metaboloma , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Doxiciclina/química , Doxiciclina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Técnicas In Vitro , Glucosídeos Iridoides/química , Iridoides/química , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas/química
10.
Phytochemistry ; 185: 112685, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33607577

RESUMO

Four undescribed and 17 known diterpenoids were isolated from the roots of Zhumeria majdae Rech.f. & Wendelbo. Using 1D and 2D NMR spectroscopy, ECD spectroscopy, and HRESIMS data analysis, the structures of the undescribed compounds were elucidated. The anti-proliferative activity of isolated compounds was evaluated against HeLa and MCF7 cancer cell lines. The binding affinity of all compounds to HSP90, one of the targets for the modern anticancer therapy, was investigated using surface plasmon resonance. The results demonstrated that lanugon Q interacted with the chaperone. To explain its mechanism of action, experimental and computational tests were also conducted.


Assuntos
Diterpenos , Salvia , Diterpenos/farmacologia , Proteínas de Choque Térmico , Estrutura Molecular , Extratos Vegetais , Raízes de Plantas
11.
Biomed Pharmacother ; 126: 110042, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32203893

RESUMO

Medicinal plants from traditional chinese medicine are used increasingly worldwide for their benefits to health and quality of life for the relevant clinical symptoms related to pain. Among them, Salvia miltiorrhiza Bunge is traditionally used in asian countries as antioxidant, anticancer, anti-inflammatory and analgesic agent. In this context, several evidences support the hypothesis that some tanshinones, in particular cryptotanshinone (CRY), extracted from the roots (Danshen) of this plant exhibit analgesic actions. However, it is surprisingly noted that no pharmacological studies have been carried out to explore the possible analgesic action of this compound in terms of modulation of peripheral and/or central pain. Therefore, in the present study, by using peripheral and central pain models of nociception, such as tail flick and hot plate test, the analgesic effect of CRY in mice was evaluated. Successively, by the aim of a computational approach, we have evaluated the interaction mode of this diterpenoid on opioid and cannabinoid system. Finally, CRY was dosed in mice serum by an HPLC method validated according to European Medicines Agency guidelines validation rules. Here, we report that CRY displayed anti-nociceptive activity on both hot plate and tail flick test, with a prominent long-lasting peripheral analgesic effect. These evidences were indirectly confirmed after the daily administration of the tanshinone for 7 and 14 days. In addition, the analgesic effect of CRY was reverted by naloxone and cannabinoid antagonists and amplified by arginine administration. These findings were finally supported by HPLC and docking studies, that revealed a noteworthy presence of CRY on mice serum 1 h after its intraperitoneal administration and a possible interaction of tested compound on µ and k receptors. Taken together, these results provide a new line of evidences showing that CRY can produce analgesia against various phenotypes of nociception with a mechanism that seems to be related to an agonistic activity on opioid system.


Assuntos
Analgésicos/metabolismo , Analgésicos/farmacologia , Fenantrenos/metabolismo , Fenantrenos/farmacologia , Analgésicos/química , Animais , Humanos , Masculino , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Medição da Dor , Fenantrenos/química , Conformação Proteica , Receptores Opioides/química , Receptores Opioides/metabolismo
12.
RSC Adv ; 10(67): 40867-40875, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-35519188

RESUMO

The recent release of the main protein structures belonging to SARS CoV-2, responsible for the coronavirus disease-19 (COVID-19), strongly pushed for identifying valuable drug treatments. With this aim, we show a repurposing study on FDA-approved drugs applying a new computational protocol and introducing a novel parameter called IVSratio. Starting with a virtual screening against three SARS CoV-2 targets (main protease, papain-like protease, spike protein), the top-ranked molecules were reassessed combining the Inverse Virtual Screening novel approach and MM-GBSA calculations. Applying this protocol, a list of drugs was identified against the three investigated targets. Also, the top-ranked selected compounds on each target (rutin vs. main protease, velpatasvir vs. papain-like protease, lomitapide vs. spike protein) were further tested with molecular dynamics simulations to confirm the promising binding modes, obtaining encouraging results such as high stability of the complex during the simulation and a good protein-ligand interaction network involving some important residues of each target. Moreover, the recent outcomes highlighting the inhibitory activity of quercetin, a natural compound strictly related to rutin, on the SARS-CoV-2 main protease, strengthened the applicability of the proposed workflow.

13.
J Chem Inf Model ; 59(11): 4678-4690, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31593460

RESUMO

Structure-based virtual screening is highly used in the early stages of drug discovery to identify new putative lead compounds for a given target. However, when a small molecule elicits a biological effect, but its target is unknown, or the side effects it causes arise from its undesired interaction with unknown counterparts, the identification of its interacting targets represents an indispensable task. The computational procedure named inverse virtual screening, which relies on docking a molecule (or a small set of compounds) against panels of target proteins to select the most promising complexes, could be useful to overcome these issues. Panels can contain thousands of proteins, and they must be correctly prepared to assure the best docking performance. Therefore, the preparation of panels of proteins collected in the Protein Data Bank ( www.rcsb.org ), if manually performed, may be costly in terms of time and efforts, and this can limit the applicability of this approach in high-throughput virtual screening workflows. We here show an automated workflow to speed up panel preparation and development, and to test its performance, this protocol was initially applied to a panel of 628 viral proteins and, afterward, to a panel of transferase proteins (2789 entries) to perform a large inverse virtual screening study, testing a small set of compounds synthesized in our laboratory. Tankyrase 2 (PARP 5b) was selected as their preferred target of interaction, and the predicted binding was validated by means of surface plasmon resonance experiments. This protocol is useful for the rapid identification of the interacting target for a bioactive compound; accordingly, it facilitates the re-evaluation of the pharmacological activity of known active compounds, addressing the repurposing and the polypharmacology concepts.


Assuntos
Descoberta de Drogas , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Bases de Dados de Proteínas , Desenho de Fármacos , Descoberta de Drogas/métodos , Humanos , Simulação de Acoplamento Molecular/métodos , Ligação Proteica , Proteínas/química , Proteínas Virais/química , Proteínas Virais/metabolismo , Fluxo de Trabalho
14.
Molecules ; 24(13)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277398

RESUMO

The object of the study was to estimate the long-lasting effects induced by ammonium glycyrrhizinate (AG) after a single administration in mice using animal models of pain and inflammation together with biochemical and docking studies. A single intraperitoneal injection of AG was able to produce anti-inflammatory effects in zymosan-induced paw edema and peritonitis. Moreover, in several animal models of pain, such as the writhing test, the formalin test, and hyperalgesia induced by zymosan, AG administered 24 h before the tests was able to induce a strong antinociceptive effect. Molecular docking studies revealed that AG possesses higher affinity for microsomal prostaglandin E synthase type-2 compared to type-1, whereas it seems to locate better in the binding pocket of cyclooxygenase (COX)-2 compared to COX-1. These results demonstrated that AG induced anti-inflammatory and antinociceptive effects until 24-48 h after a single administration thanks to its ability to bind the COX/mPGEs pathway. Taken together, all these findings highlight the potential use of AG for clinical treatment of pain and/or inflammatory-related diseases.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Ácido Glicirrízico/administração & dosagem , Ácido Glicirrízico/farmacologia , Simulação de Acoplamento Molecular , Analgésicos/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Quimiocinas/metabolismo , Edema/patologia , Formaldeído , Ácido Glicirrízico/química , Hiperalgesia/induzido quimicamente , Hiperalgesia/patologia , Injeções Intraperitoneais , Masculino , Camundongos , Cavidade Peritoneal/patologia , Zimosan/administração & dosagem
15.
Pharmacol Res ; 129: 482-490, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29158049

RESUMO

Alzheimer's disease (AD) is a common form of dementia mainly characterized by the deposition of neurofibrillary tangles and ß-amyloid (Aß) peptides in the brain. Additionally, increasing evidence demonstrates that a neuro-inflammatory state plays a key role in the development of this disease. Beside synthetic drugs, the use of natural compounds represents an alternative for the development of new potential drugs for the treatment of AD. Among these, the root of Salvia miltiorhiza Bunge (also known as Danshen) used for the treatment of cardiovascular, cerebrovascular disease and CNS functional decline in Chinese traditional medicine is one of the most representative examples. We therefore evaluated the effects of tanshinone IIA (TIIA) and cryptotanshinone (CRY) (the two major lipophilic compounds of Danshen) in a non-genetic mouse model of ß-amyloid (Aß)-induced AD, which is mainly characterized by reactive gliosis and neuro-inflammation in the brain. To this aim, mice were injected intracerebroventricularly (i.c.v.) with Aß1-42 peptide (3µg/3µl) and after with TIIA and CRY (1, 3, or 10mg/kg) intraperitoneally (i.p.) 3 times weekly for 21days following the induction of experimental AD. Spatial working memory was assessed as a measure of short-term memory in mice, whereas the level of GFAP, S100ß, COX-2, iNOS and NF-kBp65 monitored by western blot and ELISA assay, were selected as markers of reactive gliosis and neuro-inflammation. Finally, by docking studies, the modulation of key pro-inflammatory enzymes and pathways involved in the AD-related neuro-inflammation were also investigated. Results indicate that TIIA and CRY alleviate memory decline in Aß1-42-injected mice, in a dose dependent manner. Moreover, the analysis of gliosis-related and neuro-inflammatory markers in the hippocampal tissues reveal a remarkable reduction in the expression of GFAP, S100ß, COX-2, iNOS and NF-kBp65 after CRY (10mg/kg) treatment. These effects were less evident, but still significant, after TIIA (10mg/kg). Finally, in silico analysis also revealed that both compounds were able to interact with the binding sites of NF-kBp65 endorsing the data from biochemical analysis. We conclude that TIIA and CRY display anti-inflammatory and neuroprotective effect in a non-genetic mouse model of AD, thus playing a role in slowing down the course and onset of AD.


Assuntos
Abietanos/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Fenantrenos/uso terapêutico , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Masculino , Memória/efeitos dos fármacos , Camundongos , Fragmentos de Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA