Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(3): e0372323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315026

RESUMO

The World Health Organization's goal to combat tuberculosis (TB) is hindered by the emergence of anti-microbial resistance, therefore necessitating the exploration of new drug targets. Multidrug regimens are indispensable in TB therapy as they provide synergetic bactericidal effects, shorten treatment duration, and reduce the risk of resistance development. The research within our European RespiriTB consortium explores Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we describe the development and validation of a luminescence-coupled, target-based assay for the identification of novel compounds inhibiting Mycobacterium tuberculosis mycothione reductase (MtrMtb), an enzyme with a role in the protection against oxidative stress. Recombinant MtrMtb was employed for the development of a highly sensitive, robust high-throughput screening (HTS) assay by coupling enzyme activity to a bioluminescent readout. Its application in a semi-automated setting resulted in the screening of a diverse library of ~130,000 compounds, from which 19 hits were retained after an assessment of their potency, selectivity, and specificity. The selected hits formed two clusters and four fragment molecules, which were further evaluated in whole-cell and intracellular infection assays. The established HTS discovery pipeline offers an opportunity to deliver novel MtrMtb inhibitors and lays the foundation for future efforts in developing robust biochemical assays for the identification and triaging of inhibitors from high-throughput library screens. IMPORTANCE: The growing anti-microbial resistance poses a global public health threat, impeding progress toward eradicating tuberculosis. Despite decades of active research, there is still a dire need for the discovery of drugs with novel modes of action and exploration of combination drug regimens. Within the European RespiriTB consortium, we explore Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we present the development of a high-throughput screening pipeline that led to the identification of M. tuberculosis mycothione reductase inhibitors.


Assuntos
Mycobacterium tuberculosis , Oxirredutases , Tuberculose , Humanos , Antituberculosos/química , Ensaios de Triagem em Larga Escala , Desenho de Fármacos , Tuberculose/tratamento farmacológico
2.
FEMS Microbiol Rev ; 48(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38409952

RESUMO

Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.


Assuntos
Pneumonia Bacteriana , Infecções Respiratórias , Animais , Humanos , Antibacterianos/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Streptococcus pneumoniae , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Técnicas de Cultura de Células
3.
Bioorg Med Chem ; 95: 117504, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37871508

RESUMO

Mycobacterial ATP synthase is a validated therapeutic target for combating drug-resistant tuberculosis. Inhibition of this enzyme has been featured as an efficient strategy for the development of new antimycobacterial agents against drug-resistant pathogens. In this study, we synthesised and explored two distinct series of squaric acid analogues designed to inhibit mycobacterial ATP synthase. Among the extensive array of compounds investigated, members of the phenyl-substituted sub-library emerged as primary hits. To gain deeper insights into their mechanisms of action, we conducted advanced biological studies, focusing on the compounds displaying a direct binding of a nitrogen heteroatom to the phenyl ring, resulting in the highest potency. Our investigations into spontaneous mutants led to the validation of a single point mutation within the atpB gene (Rv1304), responsible for encoding the ATP synthase subunit a. This genetic alteration sheds light on the molecular basis of resistance to squaramides. Furthermore, we explored the possibility of synergy between squaramides and the reference drug clofazimine using a checkerboard assay, highlighting the promising avenue for enhancing the effectiveness of existing treatments through combined therapeutic approaches. This study contributes to the expansion of investigating squaramides as promising drug candidates in the ongoing battle against drug-resistant tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Trifosfato de Adenosina/metabolismo , Antituberculosos/química , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo
4.
mSphere ; 8(5): e0045423, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37800918

RESUMO

As effector molecules of the innate immune system, antimicrobial peptides (AMPs) have gathered substantial interest as a potential future generation of antibiotics. Here, we demonstrate the anti-Pseudomonas activity and lipopolysaccharide (LPS)-binding ability of HC1 and HC10, two cecropin peptides from the black soldier fly (Hermetia Illucens). Both peptides are active against a wide range of Pseudomonas aeruginosa strains, including drug-resistant clinical isolates. Moreover, HC1 and HC10 can bind to lipid A, the toxic center of LPS and reduce the LPS-induced nitric oxide and cytokine production in murine macrophage cells. This suggests that the peptide-LPS binding can also lower the strong inflammatory response associated with P. aeruginosa infections. As the activity of AMPs is often influenced by the presence of salts, we studied the LPS-binding activity of HC1 and HC10 in physiological salt concentrations, revealing a strong decrease in activity. Our research confirmed the early potential of HC1 and HC10 as starting points for anti-Pseudomonas drugs, as well as the need for structural or formulation optimization before further preclinical development can be considered. IMPORTANCE The high mortality and morbidity associated with Pseudomonas aeruginosa infections remain an ongoing challenge in clinical practice that requires urgent action. P. aeruginosa mostly infects immunocompromised individuals, and its prevalence is especially high in urgent care hospital settings. Lipopolysaccharides (LPSs) are outer membrane structures that are responsible for inducing the innate immune cascade upon infection. P. aeruginosa LPS can cause local excessive inflammation, or spread systemically throughout the body, leading to multi-organ failure and septic shock. As antimicrobial resistance rates in P. aeruginosa infections are rising, the research and development of new antimicrobial agents remain indispensable. Especially, antimicrobials that can both kill the bacteria themselves and neutralize their toxins are of great interest in P. aeruginosa research to develop as the next generation of drugs.


Assuntos
Anti-Infecciosos , Dípteros , Humanos , Animais , Camundongos , Pseudomonas/metabolismo , Lipopolissacarídeos/metabolismo , Peptídeos/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Pseudomonas aeruginosa , Dípteros/metabolismo
5.
Sci Rep ; 13(1): 12203, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500810

RESUMO

Dry eye disease (DED) is a challenge in ophthalmology. Rat models represent valuable tools to study the pathophysiology and to develop novel treatments. A major challenge in DED research is detecting multiple biomarkers in a low tear volume sample. Multiplex immunoassays for DED rat research are missing. We have developed a multiplex electrochemiluminescence immunoassay (ECLIA) to detect three biomarkers for DED: MMP-9, IL-17 and ICAM-1. Tears, used as matrix, were collected from six healthy Wistar rats. Assays were run based on the U-Plex Meso Scale Diagnostics (MSD) platform, by two independent operators according to the EMA guideline on bioanalytical method validation. Linear mixed, regression models were fit to perform the statistical analysis on the range of concentrations for the chosen analytes. During optimization, it has observed that incubation time, temperature and agitation affected the robustness of the protocol. ECLIA optimum conditions include the use of antibodies at 0.5 µg/ml concentration and 1 h incubation at room temperature with shaking. Precision met the acceptance criteria in the chosen range: 1062-133 pg/ml for ICAM-1, 275-34.4 pg/ml for IL-17, 1750-219 pg/ml for MMP-9. Accuracy and linearity were acceptable for a broader range. This is the first report of a validated ECLIA that allows measurements of three relevant DED biomarkers in rat tear fluids.


Assuntos
Síndromes do Olho Seco , Interleucina-17 , Ratos , Animais , Metaloproteinase 9 da Matriz , Molécula 1 de Adesão Intercelular , Ratos Wistar , Lágrimas , Síndromes do Olho Seco/diagnóstico , Biomarcadores , Imunoensaio
6.
Microbiol Spectr ; 11(3): e0497022, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140371

RESUMO

Clinicians are increasingly confronted with the limitations of antibiotics to clear bacterial infections in patients. It has long been assumed that only antibiotic resistance plays a pivotal role in this phenomenon. Indeed, the worldwide emergence of antibiotic resistance is considered one of the major health threats of the 21st century. However, the presence of persister cells also has a significant influence on treatment outcomes. These antibiotic-tolerant cells are present in every bacterial population and are the result of the phenotypic switching of normal, antibiotic-sensitive cells. Persister cells complicate current antibiotic therapies and contribute to the development of resistance. In the past, extensive research has been performed to investigate persistence in laboratory settings; however, antibiotic tolerance under conditions that mimic the clinical setting remain poorly understood. In this study, we optimized a mouse model for lung infections with the opportunistic pathogen Pseudomonas aeruginosa. In this model, mice are intratracheally infected with P. aeruginosa embedded in seaweed alginate beads and subsequently treated with tobramycin via nasal droplets. A diverse panel of 18 P. aeruginosa strains originating from environmental, human, and animal clinical sources was selected to assess survival in the animal model. Survival levels were positively correlated with the survival levels determined via time-kill assays, a common method to study persistence in the laboratory. We showed that survival levels are comparable and thus that the classical persister assays are indicative of antibiotic tolerance in a clinical setting. The optimized animal model also enables us to test potential antipersister therapies and study persistence in relevant settings. IMPORTANCE The importance of targeting persister cells in antibiotic therapies is becoming more evident, as these antibiotic-tolerant cells underlie relapsing infections and resistance development. Here, we studied persistence in a clinically relevant pathogen, Pseudomonas aeruginosa. It is one of the six ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, P. aeruginosa, and Enterobacter spp.), which are considered major health threats. P. aeruginosa is mostly known to cause chronic lung infections in cystic fibrosis patients. We mimicked these lung infections in a mouse model to study persistence under more clinical conditions. It was shown that the survival levels of natural P. aeruginosa isolates in this model are positively correlated with the survival levels measured in classical persistence assays in vitro. These results not only validate the use of our current techniques to study persistence but also open opportunities to study new persistence mechanisms or evaluate new antipersister strategies in vivo.


Assuntos
Infecções por Pseudomonas , Infecções Estafilocócicas , Humanos , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa , Enterobacter , Pulmão , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia
7.
J Enzyme Inhib Med Chem ; 38(1): 2155816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36629427

RESUMO

Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.


Assuntos
Anti-Infecciosos , Ácidos Nucleicos Peptídicos , Bactérias , Antibacterianos/farmacologia , Biofilmes
8.
Microbiol Spectr ; 10(6): e0270122, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36374111

RESUMO

Streptococcus pneumoniae is an important human pathogen, being one of the most common causes of community-acquired pneumonia and otitis media. Antibiotic resistance in S. pneumoniae is an emerging problem, as it depletes our arsenal of effective drugs. In addition, persistence also contributes to the antibiotic crisis in many other pathogens, yet for S. pneumoniae, little is known about antibiotic-tolerant persisters and robust experimental means are lacking. Persister cells are phenotypic variants that exist as a subpopulation within a clonal culture. Being tolerant to lethal antibiotics, they underly the chronic nature of a variety of infections and even help in acquiring genetic resistance. In this study, we set out to identify and characterize persistence in S. pneumoniae. Specifically, we followed different strategies to overcome the self-limiting nature of S. pneumoniae as a confounding factor in the prolonged monitoring of antibiotic survival needed to study persistence. Under optimized conditions, we identified genuine persisters in various growth phases and for four relevant antibiotics through biphasic survival dynamics and heritability assays. Finally, we detected a high variety in antibiotic survival levels across a diverse collection of S. pneumoniae clinical isolates, which assumes that a high natural diversity in persistence is widely present in S. pneumoniae. Collectively, this proof of concept significantly progresses the understanding of the importance of antibiotic persistence in S. pneumoniae infections, which will set the stage for characterizing its relevance to clinical outcomes and advocates for increased attention to the phenotype in both fundamental and clinical research. IMPORTANCE S. pneumoniae is considered a serious threat by the Centers for Disease Control and Prevention because of rising antibiotic resistance. In addition to resistance, bacteria can also survive lethal antibiotic treatment by developing antibiotic tolerance, more specifically, antibiotic tolerance through persistence. This phenotypic variation seems omnipresent among bacterial life, is linked to therapy failure, and acts as a catalyst for resistance development. This study gives the first proof of the presence of persister cells in S. pneumoniae and shows a high variety in persistence levels among diverse strains, suggesting that persistence is a general trait in S. pneumoniae cultures. Our work advocates for higher interest for persistence in S. pneumoniae as a contributing factor for therapy failure and resistance development.


Assuntos
Antibacterianos , Streptococcus pneumoniae , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Streptococcus pneumoniae/genética , Bactérias/genética , Resistência Microbiana a Medicamentos , Fenótipo
9.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36290638

RESUMO

Oxidative stress is an important component of many diseases including cancer, along with inflammatory and neurodegenerative processes. Natural antioxidants have emerged as promising substances to protect the human body against reactive oxygen and nitrogen species. The present study evaluates the inhibition of nitric oxide (NO) production in LPS-stimulated RAW 264.7 murine macrophages and the free radical scavenging activity of Croton linearis Jacq. leaves. UPLC-QTOF-MS analysis identified 18 compounds: nine alkaloids with a morphinane, benzylisoquinoline or aporphine nucleus, and nine O-glycosylated-flavonoids with quercetin, kaempferol and isorhamnetin as the aglycones. The crude extract (IC50 21.59 µg/mL) and the n-hexane fraction (IC50 4.88 µg/mL) significantly reduced the NO production in LPS-stimulated macrophages but with relatively high cytotoxicity (CC50 75.30 and CC50 70.12 µg/mL, respectively), while the ethyl acetate fraction also showed good activity (IC50 40.03 µg/mL) without affecting the RAW 264.7 cell viability. On the other hand, the crude extract, as well as the dichloromethane and ethyl acetate fractions, showed better DPPH and ABTS free radical scavenging activities. Considering the chemical composition and the activity observed for Croton linearis leaves, they may be considered a good source of antioxidants to combat oxidative damage-related diseases.

10.
PLoS Pathog ; 18(3): e1010376, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35271685

RESUMO

Sodalis glossinidius, a secondary bacterial symbiont of the tsetse fly, is currently considered as a potential delivery system for anti-trypanosomal components interfering with African trypanosome transmission (i.e. paratransgenesis). Nanobodies (Nbs) have been proposed as potential candidates to target the parasite during development in the tsetse fly. In this study, we have generated an immune Nb-library and developed a panning strategy to select Nbs against the Trypanosoma brucei brucei procyclic developmental stage present in the tsetse fly midgut. Selected Nbs were expressed, purified, assessed for binding and tested for their impact on the survival and growth of in vitro cultured procyclic T. b. brucei parasites. Next, we engineered S. glossinidius to express the selected Nbs and validated their ability to block T. brucei development in the tsetse fly midgut. Genetically engineered S. glossinidius expressing Nb_88 significantly compromised parasite development in the tsetse fly midgut both at the level of infection rate and parasite load. Interestingly, expression of Nb_19 by S. glossinidius resulted in a significantly enhanced midgut establishment. These data are the first to show in situ delivery by S. glossinidius of effector molecules that can target the trypanosome-tsetse fly crosstalk, interfering with parasite development in the fly. These proof-of-principle data represent a major step forward in the development of a control strategy based on paratransgenic tsetse flies. Finally, S. glossinidius-based Nb delivery can also be applied as a powerful laboratory tool to unravel the molecular determinants of the parasite-vector association.


Assuntos
Anticorpos de Domínio Único , Trypanosoma brucei brucei , Trypanosoma , Moscas Tsé-Tsé , Animais , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Anticorpos de Domínio Único/metabolismo , Simbiose , Trypanosoma brucei brucei/genética , Moscas Tsé-Tsé/parasitologia
12.
Front Microbiol ; 10: 1650, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396178

RESUMO

Sodalis glossinidius, a vertically transmitted facultative symbiont of the tsetse fly, is a bacterium in the early/intermediate state of its transition toward symbiosis, representing an important model for investigating how the insect host immune defense response is regulated to allow endosymbionts to establish a chronic infection within their hosts without being eliminated. In this study, we report on the establishment of a tsetse fly line devoid of S. glossinidius only, allowing us to experimentally investigate (i) the complex immunological interactions between a single bacterial species and its host, (ii) how the symbiont population is kept under control, and (iii) the impact of the symbiont on the vector competence of the tsetse fly to transmit the sleeping sickness parasite. Comparative transcriptome analysis showed no difference in the expression of genes involved in innate immune processes between symbiont-harboring (Gmm Sod+ ) and S. glossinidius-free (Gmm Sod-) flies. Re-exposure of (Gmm Sod-) flies to the endosymbiotic bacterium resulted in a moderate immune response, whereas exposure to pathogenic E. coli or to a close non-insect associated relative of S. glossinidius, i.e., S. praecaptivus, resulted in full immune activation. We also showed that S. glossinidius densities are not affected by experimental activation or suppression of the host immune system, indicating that S. glossinidius is resistant to mounted immune attacks and that the host immune system does not play a major role in controlling S. glossinidius proliferation. Finally, we demonstrate that the absence or presence of S. glossinidius in the tsetse fly does not alter its capacity to mount an immune response to pathogens nor does it affect the fly's susceptibility toward trypanosome infection.

13.
Dev Comp Immunol ; 98: 181-188, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075296

RESUMO

Tsetse flies (Glossina sp.) are medically and veterinary important vectors of African trypanosomes, protozoan parasites that cause devastating diseases in humans and livestock in sub-Saharan Africa. These flies feed exclusively on vertebrate blood and harbor a limited diversity of obligate and facultative bacterial commensals. They have a well-developed innate immune system that plays a key role in protecting the fly against invading pathogens and in modulating the fly's ability to transmit African trypanosomes. In this review, we briefly summarize our current knowledge on the tsetse fly innate immune system and its interaction with the bacterial commensals and the trypanosome parasite.


Assuntos
Imunidade Inata , Insetos Vetores/imunologia , Trypanosoma/imunologia , Tripanossomíase Africana/imunologia , Moscas Tsé-Tsé/imunologia , Animais , Bactérias/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Simbiose/imunologia , Trypanosoma/microbiologia , Trypanosoma/fisiologia , Tripanossomíase Africana/microbiologia , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia
14.
BMC Microbiol ; 18(Suppl 1): 160, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470179

RESUMO

BACKGROUND: Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the causative agents of African Trypanosomosis, which has been identified as a neglected tropical disease in both humans and animals in many regions of sub-Saharan Africa. The sterile insect technique (SIT) has shown to be a powerful method to manage tsetse fly populations when used in the frame of an area-wide integrated pest management (AW-IPM) program. To date, the release of sterile males to manage tsetse fly populations has only been implemented in areas to reduce transmission of animal African Trypanosomosis (AAT). The implementation of the SIT in areas with Human African Trypanosomosis (HAT) would require additional measures to eliminate the potential risk associated with the release of sterile males that require blood meals to survive and hence, might contribute to disease transmission. Paratransgenesis offers the potential to develop tsetse flies that are refractory to trypanosome infection by modifying their associated bacteria (Sodalis glossinidius) here after referred to as Sodalis. Here we assessed the feasibility of combining the paratransgenesis approach with SIT by analyzing the impact of ionizing radiation on the copy number of Sodalis and the vectorial capacity of sterilized tsetse males. RESULTS: Adult Glossina morsitans morsitans that emerged from puparia irradiated on day 22 post larviposition did not show a significant decline in Sodalis copy number as compared with non-irradiated flies. Conversely, the Sodalis copy number was significantly reduced in adults that emerged from puparia irradiated on day 29 post larviposition and in adults irradiated on day 7 post emergence. Moreover, irradiating 22-day old puparia reduced the copy number of Wolbachia and Wigglesworthia in emerged adults as compared with non-irradiated controls, but the radiation treatment had no significant impact on the vectorial competence of the flies. CONCLUSION: Although the radiation treatment significantly reduced the copy number of some tsetse fly symbionts, the copy number of Sodalis recovered with time in flies irradiated as 22-day old puparia. This recovery offers the opportunity to combine a paratransgenesis approach - using modified Sodalis to produce males refractory to trypanosome infection - with the release of sterile males to minimize the risk of disease transmission, especially in HAT endemic areas. Moreover, irradiation did not increase the vector competence of the flies for trypanosomes.


Assuntos
DNA/efeitos da radiação , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos da radiação , Controle de Insetos/métodos , Radiação Ionizante , Moscas Tsé-Tsé/microbiologia , Animais , Infecções por Enterobacteriaceae , Feminino , Insetos Vetores/microbiologia , Masculino , Simbiose
15.
BMC Microbiol ; 18(Suppl 1): 165, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470181

RESUMO

BACKGROUND: Tsetse flies (Glossina sp.) refractory to trypanosome infection are currently being explored as potential tools to contribute in the control of human and animal African trypanosomiasis. One approach to disrupt trypanosome transmission by the tsetse fly vector involves the use of paratransgenesis, a technique that aims to reduce vector competence of disease vectors via genetic modification of their microbiota. An important prerequisite for developing paratransgenic tsetse flies is the stable repopulation of tsetse flies and their progeny with its genetically modified Sodalis symbiont without interfering with host fitness. RESULTS: In this study, we assessed by qPCR analysis the ability of a chromosomally GFP-tagged Sodalis (recSodalis) strain to efficiently colonize various tsetse tissues and its transmission to the next generation of offspring using different introduction approaches. When introduced in the adult stage of the fly via thoracic microinjection, recSodalis is maintained at high densities for at least 21 days. However, no vertical transmission to the offspring was observed. Oral administration of recSodalis did not lead to the colonization of either adult flies or their offspring. Finally, introduction of recSodalis via microinjection of third-instar larvae resulted in stably colonized adult tsetse flies. Moreover, the subsequent generations of offspring were also efficiently colonized with recSodalis. We show that proper colonization of the female reproductive tissues by recSodalis is an important determinant for vertical transmission. CONCLUSIONS: Intralarval microinjection of recSodalis proves to be essential to achieve optimal colonization of flies with genetically modified Sodalis and its subsequent dissemination into the following generations of progeny. This study provides the proof-of-concept that Sodalis can be used to drive expression of exogenous transgenes in Glossina morsitans morsitans colonies representing a valuable contribution to the development of a paratransgenic tsetse fly based control strategy.


Assuntos
Enterobacteriaceae/genética , Controle de Insetos/métodos , Organismos Geneticamente Modificados , Moscas Tsé-Tsé/microbiologia , Animais , Cromossomos Bacterianos , Feminino , Proteínas de Fluorescência Verde , Larva/microbiologia , Masculino , Microbiota , Microinjeções , Estudo de Prova de Conceito , Simbiose
16.
BMC Microbiol ; 18(Suppl 1): 179, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470182

RESUMO

With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.


Assuntos
Insetos Vetores/fisiologia , Simbiose/genética , Moscas Tsé-Tsé/parasitologia , Animais , Feminino , Controle de Insetos/métodos , Controle de Insetos/organização & administração , Insetos Vetores/parasitologia , Microbiota , Trypanosoma/genética , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/fisiologia
17.
Mol Biol Evol ; 32(8): 1977-80, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25851957

RESUMO

Sodalis glossinidius, a maternally inherited secondary symbiont of the tsetse fly, is a bacterium in the early/intermediate state of the transition toward symbiosis, representing an important model for investigating establishment and evolution of insect-bacteria symbiosis. The absence of phylogenetic congruence in tsetse-Sodalis coevolution and the existence of Sodalis genotypic diversity in field flies are suggestive for a horizontal transmission route. However, to date no natural mechanism for the horizontal transfer of this symbiont has been identified. Using novel methodologies for the stable fluorescent-labeling and introduction of modified Sodalis in tsetse flies, we unambiguously show that male-borne Sodalis is 1) horizontally transferred to females during mating and 2) subsequently vertically transmitted to the progeny, that is, paternal transmission. This mixed mode of transmission has major consequences regarding Sodalis' genome evolution as it can lead to coinfections creating opportunities for lateral gene transfer which in turn could affect the interaction with the tsetse host.


Assuntos
Enterobacteriaceae/fisiologia , Evolução Molecular , Transferência Genética Horizontal/fisiologia , Genoma Bacteriano/fisiologia , Simbiose/fisiologia , Moscas Tsé-Tsé , Animais , Feminino , Masculino , Reprodução/fisiologia , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/fisiologia
18.
Microb Cell Fact ; 13: 156, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25376234

RESUMO

BACKGROUND: Sodalis glossinidius, a vertically transmitted microbial symbiont of the tsetse fly, is currently considered as a potential delivery system for anti-trypanosomal components that reduce or eliminate the capability of the tsetse fly host to transmit parasitic trypanosomes, an approach also known as paratransgenesis. An essential step in developing paratransgenic tsetse is the stable colonization of adult flies and their progeny with recombinant Sodalis bacteria, expressing trypanocidal effector molecules in tissues where the parasite resides. RESULTS: In this study, Sodalis was tested for its ability to deliver functional anti-trypanosome nanobodies (Nbs) in Glossina morsitans morsitans. We characterized the in vitro and in vivo stability of recombinant Sodalis (recSodalis) expressing a potent trypanolytic nanobody, i.e. Nb_An46. We show that recSodalis is competitive with WT Sodalis in in vivo conditions and that tsetse flies transiently cleared of their endogenous WT Sodalis population can be successfully repopulated with recSodalis at high densities. In addition, vertical transmission to the offspring was observed. Finally, we demonstrated that recSodalis expressed significant levels (ng range) of functional Nb_An46 in different tsetse fly tissues, including the midgut where an important developmental stage of the trypanosome parasite occurs. CONCLUSIONS: We demonstrated the proof-of-concept that the Sodalis symbiont can be genetically engineered to express and release significant amounts of functional anti-trypanosome Nbs in different tissues of the tsetse fly. The application of this innovative concept of using pathogen-targeting nanobodies delivered by insect symbiotic bacteria could be extended to other vector-pathogen systems.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Enterobacteriaceae/metabolismo , Expressão Gênica , Insetos Vetores/microbiologia , Anticorpos de Domínio Único/biossíntese , Simbiose , Trypanosoma , Moscas Tsé-Tsé/microbiologia , Animais , Anticorpos Antiprotozoários/genética , Enterobacteriaceae/genética , Anticorpos de Domínio Único/genética
19.
J Invertebr Pathol ; 112 Suppl: S75-82, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22841635

RESUMO

Blood feeding arthropods are responsible for the transmission of a large array of medically important infectious agents that include viruses, bacteria, protozoan parasites and helminths. The recent development of transgenic and paratransgenic technologies have enabled supplementing the immune system of these arthropod vectors with anti-pathogen effector molecules in view of compromising their vector competence for these microbial agents. The characteristics of the selected anti-pathogen compound will largely determine the efficacy and specificity of this approach. Low specificity will generally result in bystander effects, likely having a direct or indirect fitness cost for the arthropod. In contrast, the use of highly specific compounds from the adaptive immune system of vertebrates such as antibody derived fragments is more likely to enable highly specific effects without conferring a selective disadvantage to the (para)transgenic arthropods. Here, Nanobodies® are excellent candidates to increase the immune competence of arthropods. Moreover they were shown to exert a novel type of anti-pathogen activity that uniquely depends on their small size.


Assuntos
Vetores Artrópodes/imunologia , Controle Biológico de Vetores/métodos , Anticorpos de Domínio Único/administração & dosagem , Animais , Animais Geneticamente Modificados , Anticorpos de Domínio Único/imunologia
20.
Microb Cell Fact ; 11: 23, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22335892

RESUMO

BACKGROUND: Sodalis glossinidius, a gram-negative bacterial endosymbiont of the tsetse fly, has been proposed as a potential in vivo drug delivery vehicle to control trypanosome parasite development in the fly, an approach known as paratransgenesis. Despite this interest of S. glossinidius as a paratransgenic platform organism in tsetse flies, few potential effector molecules have been identified so far and to date none of these molecules have been successfully expressed in this bacterium. RESULTS: In this study, S. glossinidius was transformed to express a single domain antibody, (Nanobody®) Nb_An33, that efficiently targets conserved cryptic epitopes of the variant surface glycoprotein (VSG) of the parasite Trypanosoma brucei. Next, we analyzed the capability of two predicted secretion signals to direct the extracellular delivery of significant levels of active Nb_An33. We show that the pelB leader peptide was successful in directing the export of fully functional Nb_An33 to the periplasm of S. glossinidius resulting in significant levels of extracellular release. Finally, S. glossinidius expressing pelBNb_An33 exhibited no significant reduction in terms of fitness, determined by in vitro growth kinetics, compared to the wild-type strain. CONCLUSIONS: These data are the first demonstration of the expression and extracellular release of functional trypanosome-interfering Nanobodies® in S. glossinidius. Furthermore, Sodalis strains that efficiently released the effector protein were not affected in their growth, suggesting that they may be competitive with endogenous microbiota in the midgut environment of the tsetse fly. Collectively, these data reinforce the notion for the potential of S. glossinidius to be developed into a paratransgenic platform organism.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Enterobacteriaceae/metabolismo , Simbiose , Moscas Tsé-Tsé/microbiologia , Animais , Anticorpos Antiprotozoários/genética , Anticorpos Antiprotozoários/imunologia , Expressão Gênica , Glicoproteínas/imunologia , Periplasma/metabolismo , Sinais Direcionadores de Proteínas/genética , Proteínas de Protozoários/imunologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Trypanosoma brucei brucei/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA