Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Orthop Surg Res ; 17(1): 137, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246197

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells have always been a heated research topic in bone tissue regeneration and repair because of their self-renewal and multi-differentiation potential. A large number of studies have been focused on finding the inducing factors that will promote the osteogenic differentiation of bone marrow mesenchymal stem cells. Previous studies have shown that macrophage exosomes or miRNA-26a-5p can make it work, but the function of this kind of substance on cell osteogenic differentiation has not been public. METHODS: M2 macrophages are obtained from IL-4 polarized bone marrow-derived macrophages. Exosomes were isolated from the supernatant of M2 macrophages and identified via transmission electron microscopy (TEM), western blotting, and DLS. Chondrogenic differentiation potential was detected by Alcian blue staining. Oil red O staining was used to detect the potential for lipogenic differentiation. And MTT would detect the proliferative capacity of cells. Western blot was performed to detect differential expression of osteogenic differentiation-related proteins. RESULTS: The results showed that M2 macrophage exosomes will promote bone differentiation and at the same time inhibit lipid differentiation. In addition, M2 macrophage-derived exosomes have the function of promoting the expression of SOX and Aggrecan suppressing the level of MMP13. The exosome inhibitor GW4689 suppresses miRNA-26a-5p in M2 macrophage exosomes, and the treated exosomes do not play an important role in promoting bone differentiation. Moreover, miRNA-26a-5p can enable to promote bone differentiation and inhibit lipid differentiation. miRNA-26a-5p can promote the expression of ALP (alkaline phosphatase), RUNX-2 (Runt-related transcription factor 2), OPN(osteopontin), and Col-2(collagen type II). Therefore, it is speculated that exosomal miRNA-26a-5p is indispensable in osteogenic differentiation. CONCLUSIONS: The present study indicated that M2 macrophage exosomes carrying miRNA-26a-5p can induce osteogenic differentiation of bone marrow-derived stem cells to inhibit lipogenic differentiation, and miRNA-26a-5p will also promote the expression of osteogenic differentiation-related proteins ALP, RUNX-2, OPN, and Col-2.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteogênese/genética , Diferenciação Celular , Humanos , Lipídeos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Biomed Res Int ; 2021: 7218067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926690

RESUMO

Macrophages are commonly classified as M1 macrophages or M2 macrophages. M2 macrophages are obtained by stimulation of IL-4 with anti-inflammatory and tissue repair effects. Exosomes are 30-150 nm lipid bilayer membrane vesicles derived from most living cells and have a variety of biological functions. Previous studies have shown that macrophage exosomes can influence the course of some autoimmune diseases, but their effect on knee osteoarthritis (KOA) has not been reported. Here, we analyze the roles of exosomes derived from M2 macrophage phenotypes in KOA rats. Exosomes were isolated from the supernatant of M2 macrophages and identified via transmission electron microscopy (TEM), Western blotting, and DLS. The results showed that M2 macrophage exosomes significantly attenuated the inflammatory response and pathological damage of articular cartilage in KOA rats. In addition, a key protein associated with KOA including Aggrecan, Col-10, SOX6, and Runx2 was significantly increased, while MMP-13 was significantly suppressed following treatment with M2 macrophage exosomes. The present study indicated that M2 macrophage exosomes exerted protective effects on KOA rats mainly mediated by the PI3K/AKT/mTOR signal pathway. These findings provide a novel approach for the treatment of KOA.


Assuntos
Exossomos/metabolismo , Macrófagos/metabolismo , Osteoartrite do Joelho/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
3.
Exp Biol Med (Maywood) ; 240(4): 546-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25724194

RESUMO

Epigenetic changes have been recently recognized as important in many human cancers. Enhancer of zeste homologue 2 (EZH2) gene has shown overexpression in various human cancers, consistent with a straightforward role of EZH2 as an oncogene, but its function in carcinogenesis is partly contradictory. The role of EZH2 in development of human colorectal cancer (CRC) has not yet been clarified. In present study, we observed up-regulation of EZH2 expression in tumor tissues from CRC patients. The expression of EZH2 in CRC cell lines is consistent with the trend in cancer tissues using RT-PCR. We showed that TNM stage and lymph node metastasis in CRC patients are significantly correlated with EZH2 expression levels. EZH2 level of transcription and protein was inhibited by small interfering RNA (siRNA). More importantly, EZH2-siRNA inhibited the proliferation and migration of SW620 cells while promoting their apoptosis, and inducing G0/G1 cell cycle arrest of CRC cells. Collectively, our results suggest that up-regulated EZH2 expression may contribute to the progression of the patients with CRC. A comprehensive study of epigenetic mechanisms and the relevance of EZH2 in CRC is important for fully understanding this disease and as a basis for developing new treatment options in patients with CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA