Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e15822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37641599

RESUMO

Prescribed burn is a management tool that influences the physical structure and composition of forest plant communities and their associated microorganisms. Plant-associated microorganisms aid in host plant disease tolerance and increase nutrient availability. The effects of prescribed burn on microorganisms associated with native ecologically and economically important tree species, such as Cornus florida L. (flowering dogwood), are not well understood, particularly in aboveground plant tissues (e.g., leaf, stem, and bark tissues). The objective of this study was to use 16S rRNA gene and ITS2 region sequencing to evaluate changes in bacterial and fungal communities of five different flowering dogwood-associated niches (soil, roots, bark, stem, and leaves) five months following a prescribed burn treatment. The alpha- and beta-diversity of root bacterial/archaeal communities differed significantly between prescribed burn and unburned control-treated trees. In these bacterial/archaeal root communities, we also detected a significantly higher relative abundance of sequences identified as Acidothermaceae, a family of thermophilic bacteria. No significant differences were detected between prescribed burn-treated and unburned control trees in bulk soils or bark, stem, or leaf tissues. The findings of our study suggest that prescribed burn does not significantly alter the aboveground plant-associated microbial communities of flowering dogwood trees five months following the prescribed burn application. Further studies are required to better understand the short- and long-term effects of prescribed burns on the microbial communities of forest trees.


Assuntos
Cornus , Microbiota , Micobioma , RNA Ribossômico 16S/genética , Microbiota/genética , Árvores , Archaea , Solo
2.
NanoImpact ; 31: 100474, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37419450

RESUMO

Micro and nanoplastics (MPs and NPs, respectively) in agricultural soil ecosystems represent a pervasive global environmental concern, posing risks to soil biota, hence soil health and food security. This review provides a comprehensive and current summary of the literature on sources and properties of MNPs in agricultural ecosystems, methodology for the isolation and characterization of MNPs recovered from soil, MNP surrogate materials that mimic the size and properties of soil-borne MNPs, and transport of MNPs through the soil matrix. Furthermore, this review elucidates the impacts and risks of agricultural MNPs on crops and soil microorganisms and fauna. A significant source of MPs in soil is plasticulture, involving the use of mulch films and other plastic-based implements to provide several agronomic benefits for specialty crop production, while other sources of MPs include irrigation water and fertilizer. Long-term studies are needed to address current knowledge gaps of formation, soil surface and subsurface transport, and environmental impacts of MNPs, including for MNPs derived from biodegradable mulch films, which, although ultimately undergoing complete mineralization, will reside in soil for several months. Because of the complexity and variability of agricultural soil ecosystems and the difficulty in recovering MNPs from soil, a deeper understanding is needed for the fundamental relationships between MPs, NPs, soil biota and microbiota, including ecotoxicological effects of MNPs on earthworms, soil-dwelling invertebrates, and beneficial soil microorganisms, and soil geochemical attributes. In addition, the geometry, size distribution, fundamental and chemical properties, and concentration of MNPs contained in soils are required to develop surrogate MNP reference materials that can be used across laboratories for conducting fundamental laboratory studies.

3.
PLoS One ; 18(6): e0287094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310961

RESUMO

Mammalian decomposition provides pulses of organic matter to the local ecosystem creating ephemeral hotspots of nutrient cycling. While changes to soil biogeochemistry in these hotspots have been described for C and N, patterns associated with deposition and cycling of other elements have not received the same attention. The goal of our study was to evaluate temporal changes to a broad suite of dissolved elements in soils impacted by human decomposition on the soil surface including: 1) abundant mineral elements in the human body (K, Na, S, P, Ca, and Mg), 2) trace elements in the human body (Fe, Mn, Se, Zn, Cu, Co, and B), and 3) Al which is transient in the human body but common in soils. We performed a four-month human decomposition trial at the University of Tennessee Anthropology Research Facility and quantified elemental concentrations dissolved in the soil solution, targeting the mobile and bioavailable fraction. We identified three groups of elements based on their temporal patterns. Group 1 elements appeared to be cadaver-derived (Na, K, P, S) and their persistence in soil varied based upon soluble organic forms (P), the dynamics of the soil exchange complex (Na, K), and gradual releases attributable to microbial degradation (S). Group 2 elements (Ca, Mg, Mn, Se, B) included three elements that have greater concentrations in soil than would be expected based on cadaver inputs alone, suggesting that these elements partially originate from the soil exchange (Ca, Mg), or are solubilized as a result of soil acidification (Mn). Group 3 elements (Fe, Cu, Zn, Co, Al) increased late in the decomposition process, suggesting a gradual solubilization from soil minerals under acidic pH conditions. This work presents a detailed longitudinal characterization of changes in dissolved soil elements during human decomposition furthering our understanding of elemental deposition and cycling in these environments.


Assuntos
Antropologia , Ecossistema , Animais , Humanos , Ciclismo , Cadáver , Solo , Mamíferos
4.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36828391

RESUMO

Climate change is affecting how energy and matter flow through ecosystems, thereby altering global carbon and nutrient cycles. Microorganisms play a fundamental role in carbon and nutrient cycling and are thus an integral link between ecosystems and climate. Here, we highlight a major black box hindering our ability to anticipate ecosystem climate responses: viral infections within complex microbial food webs. We show how understanding and predicting ecosystem responses to warming could be challenging-if not impossible-without accounting for the direct and indirect effects of viral infections on different microbes (bacteria, archaea, fungi, protists) that together perform diverse ecosystem functions. Importantly, understanding how rising temperatures associated with climate change influence viruses and virus-host dynamics is crucial to this task, yet is severely understudied. In this perspective, we (i) synthesize existing knowledge about virus-microbe-temperature interactions and (ii) identify important gaps to guide future investigations regarding how climate change might alter microbial food web effects on ecosystem functioning. To provide real-world context, we consider how these processes may operate in peatlands-globally significant carbon sinks that are threatened by climate change. We stress that understanding how warming affects biogeochemical cycles in any ecosystem hinges on disentangling complex interactions and temperature responses within microbial food webs.


Assuntos
Viroses , Vírus , Humanos , Ecossistema , Aquecimento Global , Mudança Climática , Carbono
5.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36631293

RESUMO

Vertebrate decomposition results in an ephemeral disturbance of the surrounding environment. Microbial decomposers are recognized as key players in the breakdown of complex organic compounds, controlling carbon and nutrient fate in the ecosystem and potentially serving as indicators of time since death for forensic applications. As a result, there has been increasing attention on documenting the microbial communities associated with vertebrate decomposition, or the 'necrobiome'. These necrobiome studies differ in the vertebrate species, microhabitats (e.g. skin vs. soil), and geographic locations studied, but many are narrowly focused on the forensic application of microbial data, missing the larger opportunity to understand the ecology of these communities. To further our understanding of microbial dynamics during vertebrate decomposition and identify knowledge gaps, there is a need to assess the current works from an ecological systems perspective. In this review, we examine recent work pertaining to microbial community dynamics and succession during vertebrate (human and other mammals) decomposition in terrestrial ecosystems, through the lens of a microbial succession ecological framework. From this perspective, we describe three major microbial microhabitats (internal, external, and soil) in terms of their unique successional trajectories and identify three major knowledge gaps that remain to be addressed.


Assuntos
Ecossistema , Microbiota , Animais , Humanos , Vertebrados/metabolismo , Ecologia , Microbiologia do Solo , Solo , Mamíferos
6.
mSystems ; 7(6): e0057122, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445691

RESUMO

Soils are the largest organic carbon reservoir and are key to global biogeochemical cycling, and microbes are the major drivers of carbon and nitrogen transformations in the soil systems. Thus, virus infection-induced microbial mortality could impact soil microbial structure and functions. In this study, we recovered 260 viral operational taxonomic units (vOTUs) in samples collected from soil taken from four nitrogen fertilization (N-fertilization) and cover-cropping practices at an experimental site under continuous cotton production evaluating conservation agricultural management systems for more than 40 years. Only ~6% of the vOTUs identified were clustered with known viruses in the RefSeq database using a gene-sharing network. We found that 14% of 260 vOTUs could be linked to microbial hosts that cover key carbon and nitrogen cycling taxa, including Acidobacteriota, Proteobacteria, Verrucomicrobiota, Firmicutes, and ammonia-oxidizing archaea, i.e., Nitrososphaeria (phylum Thermoproteota). Viral diversity, community structure, and the positive correlation between abundance of a virus and its host indicate that viruses and microbes are more sensitive to N-fertilization than cover-cropping treatment. Viruses may influence key carbon and nitrogen cycling through control of microbial function and host populations (e.g., Chthoniobacterales and Nitrososphaerales). These findings provide an initial view of soil viral ecology and how it is influenced by long-term conservation agricultural management. IMPORTANCE Bacterial viruses are extremely small and abundant particles that can control the microbial abundance and community composition through infection, which gradually showed their vital roles in the ecological process to influence the nutrient flow. Compared to the substrate control, less is known about the influence of soil viruses on microbial community function, and even less is known about microbial and viral diversity in the soil system. To obtain a more complete knowledge of microbial function dynamics, the interaction between microbes and viruses cannot be ignored. To fully understand this process, it is fundamental to get insight into the correlation between the diversity of viral communities and bacteria which could induce these changes.


Assuntos
Solo , Vírus , Solo/química , Nitrogênio/análise , Microbiologia do Solo , Archaea , Vírus/genética , Carbono , Fertilização
7.
J Microbiol Biol Educ ; 23(2)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36061316

RESUMO

Widespread usage of high-throughput sequencing (HTS) in the LIFE SCIENCES has produced a demand for undergraduate and graduate institutions to offer classes exposing students to all aspects of HTS (sample acquisition, laboratory work, sequencing technologies, bioinformatics, and statistical analyses). Despite the increase in demand, many challenges exist for these types of classes. We advocate for the usage of the sourdough starter microbiome for implementing meta-amplicon sequencing. The relatively small community, dominated by a few taxa, enables potential contaminants to be easily identified, while between-sample differences can be quickly statistically assessed. Finally, bioinformatic pipelines and statistical analyses can be carried out on personal student laptops or in a teaching computer lab. In two semesters adopting this system, 12 of 14 students were able to effectively capture the sourdough starter microbiome, using the instructor's paired sample as reference.

8.
mSphere ; 7(5): e0032522, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36135386

RESUMO

Microorganisms are key decomposers of vertebrate mortalities, breaking down body tissues and impacting decomposition progress. During human decomposition, both extrinsic environmental factors and intrinsic cadaver-related factors have the potential to impact microbial decomposers either directly or indirectly via altered physical or chemical conditions. While extrinsic factors (e.g., temperature, humidity) explain some variation in microbial response during human decomposition in terrestrial settings, recent work has noted that even under the same environmental conditions, individuals can have different decomposition patterns, highlighting the potential for intrinsic factors to impact microbial decomposers. The goal of this study was to investigate the effects of several intrinsic factors (age, sex, diseases at time of death, and body mass index [BMI]) on chemical and microbial changes in decomposition-impacted soils. In a field study conducted at the University of Tennessee Anthropology Research Facility, soils were collected from the decomposition-impacted area surrounding 19 deceased human individuals through the end of active decomposition. Soil physicochemical parameters were measured, and microbial (bacterial and fungal) communities were assessed via amplicon sequencing. BMI was shown to explain some variation in soil pH and microbial response to human decomposition. Hierarchical linear mixed (HLM) effects models revealed that BMI category significantly explained variation in pH response within decomposition-impacted soils over time (HLM F = 9.647; P < 0.001). Additionally, the relative abundance of soil Saccharomycetes in decomposition soils under underweight donors displayed little to no changes (mean maximum change in relative abundance, +6.6%), while all other BMI categories displayed an increased relative abundance of these organisms over time (normal, +50.6%; overweight, +64.4%; and obese, +64.6%) (HLM F = 3.441; P = 0.11). Together, these results reveal intrinsic factors influencing decomposition patterns, especially within the soil environment, and suggest BMI is an important factor for controlling decomposition processes. IMPORTANCE This work begins to address questions about interindividual variation in vertebrate decomposition attributed to intrinsic factors, that is, properties of the carcass or cadaver itself. Most research on factors affecting decomposition has focused on the extrinsic environment, such as temperature or humidity. While these extrinsic factors do explain some variation in decomposition patterns, interindividual variability is still observed. Understanding how intrinsic factors influence microbial decomposers will help reveal the ecological impacts of decomposition. This work also has forensic applications, as soil chemical and biological changes have been suggested as indicators of postmortem interval. We reveal factors that explain variation in the decomposition environment that should be considered in these estimates. This is particularly important as we consider the implications of variations in human populations due to diet, age, BMI, disease, toxicological loading, etc. on forensic investigations dealing with decomposing remains.


Assuntos
Microbiologia do Solo , Solo , Humanos , Solo/química , Índice de Massa Corporal , Bactérias , Cadáver
9.
PeerJ ; 10: e13874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979477

RESUMO

Soil microbial transformation of nitrogen (N) in nutrient-limited native C4 grasslands can be affected by N fertilization rate and C4 grass species. Here, we report in situ dynamics of the population size (gene copy abundances) and activity (transcript copy abundances) of five functional genes involved in soil N cycling (nifH, bacterial amoA, nirK, nirS, and nosZ) in a field experiment with two C4 grass species (switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii)) under three N fertilization rates (0, 67, and 202 kg N ha-1). Diazotroph (nifH) abundance and activity were not affected by N fertilization rate nor grass species. However, moderate and high N fertilization promoted population size and activity of ammonia oxidizing bacteria (AOB, quantified via amoA genes and transcripts) and nitrification potential. Moderate N fertilization increased abundances of nitrite-reducing bacterial genes (nirK and nirS) under switchgrass but decreased these genes under big bluestem. The activity of nitrous oxide reducing bacteria (nosZ transcripts) was also promoted by moderate N fertilization. In general, high N fertilization had a negative effect on N-cycling populations compared to moderate N addition. Compared to big bluestem, the soils planted with switchgrass had a greater population size of AOB and nitrite reducers. The significant interaction effects of sampling season, grass species, and N fertilization rate on N-cycling microbial community at genetic-level rather than transcriptional-level suggested the activity of N-cycling microbial communities may be driven by more complex environmental factors in native C4 grass systems, such as climatic and edaphic factors.


Assuntos
Pradaria , Ureia , Poaceae , Nitritos , Bactérias/genética , Solo , Nitrogênio/farmacologia , Fertilização
10.
mSystems ; 7(2): e0004122, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35353006

RESUMO

Bones and teeth can provide a lasting resource to identify human remains following decomposition. Bone can support dynamic communities of micro- and macroscopic scavengers and incidental taxa, which influence the preservation of bone over time. Previously we identified key microbial taxa associated with survivability of DNA in bones of surface-decomposed human remains, observing high intra- and interindividual variation. Here we characterized the postmortem bone microbiome of skeletal remains in a multi-individual burial to better understand subsurface bone colonization and preservation. To understand microbial community origins and assembly, 16S rRNA amplicon sequences from 256 bone and 27 soil samples were compared to bone from individuals who decomposed on the ground surface, and human gut sequences from the American Gut Project. Untargeted metabolomics was applied to a subset of 41 bone samples from buried remains to examine potential microbe-metabolite interactions and infer differences related to community functionality. Results show that postmortem bone microbial communities are distinct from those of the oxic surface soils and the human gut. Microbial communities from surface-deposited bone and shallow buried bone were more similar to those from soils, while bones recovered from saturated areas deeper in the grave showed increased similarity with human gut samples with higher representation of anaerobic taxa, suggesting that the depositional environment affected the established bone microbiome. Correlations between metabolites and microbes indicate that phosphate solubilization is likely an important mechanism of microbially mediated skeletal degradation. This research expands our knowledge of microbial bone colonizers, including colonizers important in a burial environment. IMPORTANCE Understanding the microbes that colonize and degrade bone has important implications for preservation of skeletal elements and identification of unknown human remains. Current research on the postmortem bone microbiome is limited and largely focuses on archaeological or marine contexts. Our research expands our understanding of bone microbiomes in buried remains by characterizing the taxonomic and metabolic diversity of microbes that are colonizing bone after a 4-year postmortem burial interval and examines the potential impact of microbial colonization on human skeletal DNA preservation. Our results indicate that the postmortem bone microbiome is distinct from the human gut and soil. Evidence from combined metabolomic and amplicon sequencing analysis suggests that Pseudomonas and phosphate solubilization likely play a role in skeletal degradation. This work provides important insight into the types and activities of microbes controlling the preservation of buried skeletal remains.


Assuntos
Restos Mortais , Microbiota , Humanos , RNA Ribossômico 16S/análise , Microbiota/genética , DNA , Solo
11.
Front Microbiol ; 12: 675693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305840

RESUMO

Native C4 grasses have become the preferred species for native perennial pastures and bioenergy production due to their high productivity under low soil nitrogen (N) status. One reason for their low N requirement is that C4 grasses may benefit from soil diazotrophs and promote biological N fixation. Our objective was to evaluate the impact of N fertilization rates (0, 67, and 202 kg N ha-1) and grass species (switchgrass [Panicum virgatum] and big bluestem [Andropogon gerardii]) on the abundance, activity, diversity, and community composition of soil diazotrophs over three agricultural seasons (grass green-up, initial harvest, and second harvest) in a field experiment in East Tennessee, United States. Nitrogen fertilization rate had a stronger influence on diazotroph population size and activity (determined by nifH gene and transcript abundances) and community composition (determined by nifH gene amplicon sequencing) than agricultural season or grass species. Excessive fertilization (202 kg N ha-1) resulted in fewer nifH transcripts compared to moderate fertilization (67 kg N ha-1) and decreased both richness and evenness of diazotrophic community, reflecting an inhibitory effect of high N application rates on soil diazotrophic community. Overall, cluster I and cluster III diazotrophs were dominant in this native C4 grass system. Diazotroph population size and activity were directly related to soil water content (SWC) based on structural equation modeling. Soil pH, SWC, and C and N availability were related to the variability of diazotrophic community composition. Our results revealed relationships between soil diazotrophic community and associated soil properties, adding to our understanding of the response of soil diazotrophs to N fertilization and grass species in native C4 grass systems.

12.
Front Microbiol ; 12: 617066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897633

RESUMO

Runoff from land-applied manure and poultry litter is one mechanism by which manure-borne bacteria are transported over large distances in the environment. There is a global concern that antimicrobial resistant (AMR) genes may be transmitted through the food chain from animal manures to soil to surface water. However, details are lacking on the ecology of AMR genes in water runoff as well as how conservation management practices may affect the runoff microbiome or minimize the movement of AMR genes. The aim of this study was to identify microbial community structure and diversity in water runoff following 14-years of poultry litter and cattle manure deposition and to evaluate the amount of AMR genes under five conventional and conservation pasture management strategies. Since 2004, all watersheds received annual poultry litter at a rate of 5.6 Mg ha-1 and were consistently managed. Surface runoff samples were collected from each watershed from 2018 to 2019, characterized using Illumina 16S rRNA gene amplicon sequencing and enumerated for four AMR-associated genes (ermB, sulI, intlI, and blactx-m-32 ) using quantitative PCR. Overall, long-term pasture management influenced water microbial community structure, with effects differing by year (p < 0.05). Bacterial richness (Chao1 index) was influenced by pasture management, with the lowest richness occurring in the control (nearby non-agricultural water source) and the greatest under fields that were hayed (no cattle presence). Runoff bacterial richness in watersheds increased following poultry litter applications, indicating poultry litter is a possible source of bacteria and altered runoff community structure. The blactx-m-32 gene was not detected in any surface water sample. The remaining three AMR genes were absent in the non-agricultural control, but present in agricultural samples. However, there was no impact (p > 0.05) from pasture management on the abundance of these genes, indicating both conventional and conservation practices have similar ecologies for these targets; however, there was a greater detection of sulI genes from runoff in continuously grazed systems in 2019, with hay being lowest in 2019. Results illustrate that the edge of field buffer strips may increase bacterial richness in water runoff, but these changes in richness do not greatly impact target AMR genes in the United States largest land-use category.

13.
PLoS One ; 16(3): e0248100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33760843

RESUMO

Combined application of biochar and nitrogen (N) fertilizer has the potential to reduce N losses from soil. However, the effectiveness of biochar amendment on N management can vary with biochar types with different physical and chemical properties. This study aimed to assess the effect of two types of hardwood biochar with different ash contents and cation exchange capacity (CEC) on soil N mineralization and nitrous oxide (N2O) production when applied alone and in combination with N fertilizer. Soil samples collected from a temperate pasture system were amended with two types of biochar (B1 and B2), urea, and urea plus biochar, and incubated for 60 days along with soil control (without biochar or urea addition). Soil nitrate N, ammonium N, ammonia-oxidizing bacteria amoA gene transcripts, and N2O production were measured during the experiment. Compared to control, addition of B1 (higher CEC and lower ash content) alone decreased nitrate N concentration by 21% to 45% during the incubation period while the addition of B2 (lower CEC and higher ash content) alone increased the nitrate N concentration during the first 10 days. Biochar B1 also reduced the abundance of amoA transcripts by 71% after 60 days. Compared to B1 + urea, B2 + urea resulted in a significantly greater initial increase in soil ammonium and nitrate N concentrations. However, B2 + urea had a significantly lower 60-day cumulative N2O emission compared to B1 + urea. Overall, when applied with urea, the biochar with higher CEC reduced ammonification and nitrification rates, while biochar with higher ash content reduced N N2O production. Our study demonstrated that biochar has the potential to enhance N retention in soil and reduce N2O emission when it is applied with urea, but the specific effects of the added biochar depend on its physical and chemical properties.


Assuntos
Carvão Vegetal , Fertilizantes/análise , Nitrogênio/análise , Solo/química , Agricultura
14.
mSphere ; 6(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441406

RESUMO

Soil microbial transformations of nitrogen (N) can be affected by soil health management practices. Here, we report in situ seasonal dynamics of the population size (gene copy abundances) and functional activity (transcript copy abundances) of five bacterial genes involved in soil N cycling (ammonia-oxidizing bacteria [AOB] amoA, nifH, nirK, nirS, and nosZ) in a long-term continuous cotton production system under different management practices (cover crops, tillage, and inorganic N fertilization). Hairy vetch (Vicia villosa Roth), a leguminous cover crop, most effectively promoted the expression of N cycle genes, which persisted after cover crop termination throughout the growing season. Moreover, we observed similarly high or even higher N cycle gene transcript abundances under vetch with no fertilizer as no cover crop with N fertilization throughout the cover crop peak and cotton growing seasons (April, May, and October). Further, both the gene and transcript abundances of amoA and nosZ were positively correlated to soil nitrous oxide (N2O) emissions. We also found that the abundances of amoA genes and transcripts both positively correlated to field and incubated net nitrification rates. Together, our results revealed relationships between microbial functional capacity and activity and in situ soil N transformations under different agricultural seasons and soil management practices.IMPORTANCE Conservation agriculture practices that promote soil health have distinct and lasting effects on microbial populations involved with soil nitrogen (N) cycling. In particular, using a leguminous winter cover crop (hairy vetch) promoted the expression of key functional genes involved in soil N cycling, equaling or exceeding the effects of inorganic N fertilizer. Hairy vetch also left a legacy on soil nutrient capacity by promoting the continued activity of N cycling microbes after cover crop termination and into the main growing season. By examining both genes and transcripts involved in soil N cycling, we showed different responses of functional capacity (i.e., gene abundances) and functional activity (i.e., transcript abundances) to agricultural seasons and management practices, adding to our understanding of the effects of soil health management practices on microbial ecology.


Assuntos
Agricultura/métodos , Bactérias/genética , Ciclo do Nitrogênio/genética , Microbiologia do Solo , Fenômenos Fisiológicos Bacterianos/genética , Nitrificação , Nitrogênio/metabolismo , Ciclo do Nitrogênio/fisiologia , Solo/química , Vicia/microbiologia
15.
PeerJ ; 9: e12592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003922

RESUMO

BACKGROUND: Fertilizer addition can contribute to nitrogen (N) losses from soil by affecting microbial populations responsible for nitrification. However, the effects of N fertilization on ammonia oxidizing bacteria under C4 perennial grasses in nutrient-poor grasslands are not well studied. METHODS: In this study, a field experiment was used to assess the effects of N fertilization rate (0, 67, and 202 kg N ha-1) and grass species (switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii)) on ammonia-oxidizing bacterial (AOB) communities in C4 grassland soils using quantitative PCR, quantitative reverse transcription-PCR, and high-throughput amplicon sequencing of amoA genes. RESULTS: Nitrosospira were dominant AOB in the C4 grassland soil throughout the growing season. N fertilization rate had a stronger influence on AOB community composition than C4 grass species. Elevated N fertilizer application increased the abundance, activity, and alpha-diversity of AOB communities as well as nitrification potential, nitrous oxide (N2O) emission and soil acidity. The abundance and species richness of AOB were higher under switchgrass compared to big bluestem. Soil pH, nitrate, nitrification potential, and N2O emission were significantly related to the variability in AOB community structures (p < 0.05).

16.
Front Microbiol ; 11: 587074, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281783

RESUMO

Agricultural plastic mulch films provide a favorable soil microclimate for plant growth, improving crop yields. Biodegradable plastic mulch films (BDMs) have emerged as a sustainable alternative to widely used non-biodegradable polyethylene (PE) films. BDMs are tilled into the soil after use and are expected to biodegrade under field conditions. However, little is known about the microbes involved in biodegradation and the relationships between microbes and plastics in soils. In order to capture the consortium of soil microbes associated with (and thus likely degrading) BDMs, agriculturally-weathered plastics from two locations were studied alongside laboratory enrichment experiments to assess differences in the microbial communities associated with BDMs and PE films. Using a combination of amplicon sequencing and quantitative PCR (qPCR), we observed that agriculturally-weathered plastics hosted an enrichment of fungi and an altered bacterial community composition compared to the surrounding soil. Notably, Methylobacterium, Arthrobacter, and Sphingomonas were enriched on BDMs compared to non-biodegradable PE. In laboratory enrichment cultures, microbial consortia were able to degrade the plastics, and the composition of the microbial communities was influenced by the composition of the BDMs. Our initial characterization of the microbial communities associated with biodegradable plastic mulch films, or the biodegradable "plastisphere," lays the groundwork for understanding biodegradation dynamics of biodegradable plastics in the environment.

17.
PeerJ ; 8: e10258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194426

RESUMO

The persistence of antimicrobial resistant (AMR) genes in the soil-environment is a concern, yet practices that mitigate AMR are poorly understood, especially in grasslands. Animal manures are widely deposited on grasslands, which are the largest agricultural land-use in the United States. These nutrient-rich manures may contain AMR genes. The aim of this study was to enumerate AMR genes in grassland soils following 14-years of poultry litter and cattle manure deposition and evaluate if best management practices (rotationally grazed with a riparian (RBR) area and a fenced riparian buffer strip (RBS), which excluded cattle grazing and poultry litter applications) relative to standard pasture management (continuously grazed (CG) and hayed (H)) minimize the presence and amount of AMR genes. Quantitative PCR (Q-PCR) was performed to enumerate four AMR genes (ermB, sulI, intlI, and blactx-m-32 ) in soil, cattle manure, and poultry litter environments. Six soil samples were additionally subjected to metagenomic sequencing and resistance genes were identified from assembled sequences. Following 14-years of continuous management, ermB, sulI, and intlI genes in soil were greatest (P < 0.05) in samples collected under long-term continuous grazing (relative to conservation best management practices), under suggesting overgrazing and continuous cattle manure deposition may increase AMR gene presence. In general, AMR gene prevalence increased downslope, suggesting potential lateral movement and accumulation based on landscape position. Poultry litter had lower abundance of AMR genes (ermB, sulI, and intlI) relative to cattle manure. Long-term applications of poultry litter increased the abundance of sulI and intlI genes in soil (P < 0.05). Similarly, metagenomic shotgun sequencing revealed a greater total number of AMR genes under long-term CG, while fewer AMR genes were found in H (no cattle manure) and RBS (no animal manure or poultry litter). Results indicate long-term conservation pasture management practices (e.g., RBS and RBR) and select animal manure (poultry litter inputs) may minimize the presence and abundance of AMR genes in grassland soils.

18.
PLoS One ; 15(11): e0241777, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33147264

RESUMO

Decomposition of vertebrate remains is a dynamic process that creates localized soil enrichment zones. A growing body of literature has documented effects of vertebrate decomposition on soil pH, electrical conductivity, oxygen levels, nitrogen and carbon speciation, microbial biomass, and microbial successional patterns. However, relatively few studies have examined the microfaunal members of the soil food web that function as secondary consumers, specifically nematodes. Nematodes are often used as indicators of enrichment in other systems, and initial observations from vertebrate decomposition zones have indicated there is an effect on nematode communities. Our goal was to catalog decomposition-induced nematode succession and changes to alpha, beta, and functional diversity, and identify potential indicator taxa associated with decomposition progression. Six adult beaver (Castor canadensis) carcasses were allowed to decompose in a forest ecosystem for one year. During this period soil temperature, moisture, and electrical conductivity were monitored. Soils samples were taken at two depths in order to assess nematode community dynamics: 30-cm cores and 1-cm interface samples. Nematode abundance, alpha, beta, and functional diversity all responded to soil enrichment at the onset of active decay, and impacts persisted through skeletonization. After one year, nematode abundances and alpha diversity had recovered to original levels, however both community membership and functional diversity remained significantly altered. We identified seven indicator taxa that marked major transitions in decomposition progression. Enrichment of Rhabditidae (B1) and Diplogasteridae (B1) coupled with depletion in Filenchus (F2) characterized active and advanced decay prior to skeletonization in both cores and interface soils. Enrichment of Acrobeloides (B2), Aphelenchoides (F2), Tylencholaimidae (F4) and Seinura (P2) occurred during a narrow period in mid-skeletonization (day 153). Our study has revealed soil nematode successional patterns during vertebrate decomposition and has identified organisms that may function as indicator taxa for certain periods during decomposition.


Assuntos
Nematoides/fisiologia , Solo/parasitologia , Animais , Biodiversidade , Florestas , Nematoides/crescimento & desenvolvimento , Roedores/fisiologia , Solo/química , Temperatura
19.
Trends Plant Sci ; 25(10): 947-949, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32893124

RESUMO

In the USA, 100 000 people go missing every year. Difficulty in the rapid identification of sites of human decomposition complicates the recovery of bodies, especially in forests. We propose that spectral responses in tree and shrub canopies could act as guides to find cadavers using remote sensing platforms for societal benefit.


Assuntos
Florestas , Tecnologia de Sensoriamento Remoto , Humanos , Plantas , Árvores
20.
Front Microbiol ; 11: 1494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733413

RESUMO

As reported in many aquatic environments, recent studies in terrestrial ecosystems implicate a role for viruses in shaping the structure, function, and evolution of prokaryotic soil communities. However, given the heterogeneity of soil and the physical constraints (i.e., pore-scale hydrology and solid-phase adsorption of phage and host cells) on the mobility of viruses and bacteria, phage-host interactions likely differ from those in aquatic systems. In this study, temporal changes in the population dynamics of viruses and bacteria in soils under different land management practices were examined. The results showed that bacterial abundance was significantly and positively correlated to both virus and inducible prophage abundance. Bacterial and viral abundance were also correlated with soil organic carbon and nitrogen content as well as with C:N ratio. The seasonal variability in viral abundance increased with soil organic carbon content. The prokaryotic community structure was influenced more by land use than by seasonal variation though considerable variation was evident in the early plant successional and grassland sites. The free extracellular viral communities were also separated by land use, and the forest soil viral assemblage exhibiting the most seasonal variability was more distinct from the other sites. Viral assemblages from the agricultural soils exhibited the least seasonal variability. Similar patterns were observed for inducible prophage viral assemblages. Seasonal variability of viral assemblages was greater in mitomycin-C (mitC) induced prophages than in extracellular viruses irrespective of land use and management. Taken together, the data suggest that soil viral production and decay are likely balanced but there was clear evidence that the structure of viral assemblages is influenced by land use and by season.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA