Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 178: 108033, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356308

RESUMO

Drinking-water quality is a rising concern in the United States (US), emphasizing the need to broadly assess exposures and potential health effects at the point-of-use. Drinking-water exposures to per- and poly-fluoroalkyl substances (PFAS) are a national concern, however, there is limited information on PFAS in residential tapwater at the point-of-use, especially from private-wells. We conducted a national reconnaissance to compare human PFAS exposures in unregulated private-well and regulated public-supply tapwater. Tapwater from 716 locations (269 private-wells; 447 public supply) across the US was collected during 2016-2021 including three locations where temporal sampling was conducted. Concentrations of PFAS were assessed by three laboratories and compared with land-use and potential-source metrics to explore drivers of contamination. The number of individual PFAS observed ranged from 1 to 9 (median: 2) with corresponding cumulative concentrations (sum of detected PFAS) ranging from 0.348 to 346 ng/L. Seventeen PFAS were observed at least once with PFBS, PFHxS and PFOA observed most frequently in approximately 15% of the samples. Across the US, PFAS profiles and estimated median cumulative concentrations were similar among private wells and public-supply tapwater. We estimate that at least one PFAS could be detected in about 45% of US drinking-water samples. These detection probabilities varied spatially with limited temporal variation in concentrations/numbers of PFAS detected. Benchmark screening approaches indicated potential human exposure risk was dominated by PFOA and PFOS, when detected. Potential source and land-use information was related to cumulative PFAS concentrations, and the number of PFAS detected; however, corresponding relations with specific PFAS were limited likely due to low detection frequencies and higher detection limits. Information generated supports the need for further assessments of cumulative health risks of PFAS as a class and in combination with other co-occurring contaminants, particularly in unmonitored private-wells where information is limited or not available.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Estados Unidos , Humanos , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Qualidade da Água , Água , Laboratórios
2.
Environ Toxicol Chem ; 42(2): 367-384, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36562491

RESUMO

Watersheds of the Great Lakes Basin (USA/Canada) are highly modified and impacted by human activities including pesticide use. Despite labeling restrictions intended to minimize risks to nontarget organisms, concerns remain that environmental exposures to pesticides may be occurring at levels negatively impacting nontarget organisms. We used a combination of organismal-level toxicity estimates (in vivo aquatic life benchmarks) and data from high-throughput screening (HTS) assays (in vitro benchmarks) to prioritize pesticides and sites of concern in streams at 16 tributaries to the Great Lakes Basin. In vivo or in vitro benchmark values were exceeded at 15 sites, 10 of which had exceedances throughout the year. Pesticides had the greatest potential biological impact at the site with the greatest proportion of agricultural land use in its basin (the Maumee River, Toledo, OH, USA), with 72 parent compounds or transformation products being detected, 47 of which exceeded at least one benchmark value. Our risk-based screening approach identified multiple pesticide parent compounds of concern in tributaries of the Great Lakes; these compounds included: eight herbicides (metolachlor, acetochlor, 2,4-dichlorophenoxyacetic acid, diuron, atrazine, alachlor, triclopyr, and simazine), three fungicides (chlorothalonil, propiconazole, and carbendazim), and four insecticides (diazinon, fipronil, imidacloprid, and clothianidin). We present methods for reducing the volume and complexity of potential biological effects data that result from combining contaminant surveillance with HTS (in vitro) and traditional (in vivo) toxicity estimates. Environ Toxicol Chem 2023;42:367-384. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Herbicidas , Inseticidas , Praguicidas , Poluentes Químicos da Água , Humanos , Praguicidas/toxicidade , Praguicidas/análise , Lagos/química , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Rios/química
3.
Environ Toxicol Chem ; 41(9): 2221-2239, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35852176

RESUMO

In a study of 44 diverse sampling sites across 16 Great Lakes tributaries, 110 pharmaceuticals were detected of 257 monitored. The present study evaluated the ecological relevance of detected chemicals and identified heavily impacted areas to help inform resource managers and guide future investigations. Ten pharmaceuticals (caffeine, nicotine, albuterol, sulfamethoxazole, venlafaxine, acetaminophen, carbamazepine, gemfibrozil, metoprolol, and thiabendazole) were distinguished as having the greatest potential for biological effects based on comparison to screening-level benchmarks derived using information from two biological effects databases, the ECOTOX Knowledgebase and the ToxCast database. Available evidence did not suggest substantial concern for 75% of the monitored pharmaceuticals, including 147 undetected pharmaceuticals and 49 pharmaceuticals with screening-level alternative benchmarks. However, because of a lack of biological effects information, screening values were not available for 51 detected pharmaceuticals. Samples containing the greatest pharmaceutical concentrations and having the highest detection frequencies were from Lake Erie, southern Lake Michigan, and Lake Huron tributaries. Samples collected during low-flow periods had higher pharmaceutical concentrations than those collected during increased-flow periods. The wastewater-treatment plant effluent content in streams correlated positively with pharmaceutical concentrations. However, deviation from this correlation demonstrated that secondary factors, such as multiple pharmaceutical sources, were likely present at some sites. Further research could investigate high-priority pharmaceuticals as well as those for which alternative benchmarks could not be developed. Environ Toxicol Chem 2022;41:2221-2239. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Lagos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Lagos/química , Preparações Farmacêuticas , Rios/química , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 677: 362-372, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31059879

RESUMO

Organic chemicals from industrial, agricultural, and residential activities can enter surface waters through regulated and unregulated discharges, combined sewer overflows, stormwater runoff, accidental spills, and leaking septic-conveyance systems on a daily basis. The impact of point and nonpoint contaminant sources can result in adverse biological effects for organisms living in or near surface waters. Assessing the adverse or toxic effects that may result when exposure occurs is complicated by the fact that many commonly used chemicals lack toxicity information or water quality standards. To address these challenges, an exposure-activity ratio (EAR) screening approach was used to prioritize environmental chemistry data in a West Virginia watershed (Wolf Creek). Wolf Creek is a drinking water source and recreation resource with documented water quality impacts from point and nonpoint sources. The EAR screening approach uses high-throughput screening (HTS) data from ToxCast as a method of integrating environmental chemical occurrence and biological effects data. Using water quality schedule 4433, which targets 69 organic waste compounds typically found in domestic and industrial wastewater, chemicals were screened for potential adverse biological affects at multiple sites in the Wolf Creek watershed. Cumulative EAR mixture values were greatest at Sites 2 and 3, where bisphenol A (BPA) and pentachlorophenol exhibited maximum EAR values of 0.05 and 0.002, respectively. Site 2 is downstream of an unconventional oil and gas (UOG) wastewater disposal facility with documented water quality impacts. Low-level organic contaminants were found at all sample sites in Wolf Creek, except Site 10, where Wolf Creek enters the New River. The application of an EAR screening approach allowed our study to extend beyond traditional environmental monitoring methods to identify multiple sites and chemicals that warrant further investigation.


Assuntos
Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Ensaios de Triagem em Larga Escala/métodos , Rios , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Água Potável/análise , Qualidade da Água , West Virginia
5.
Sci Total Environ ; 655: 70-83, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30469070

RESUMO

Complex chemical mixtures have been widely reported in larger streams but relatively little work has been done to characterize them and assess their potential effects in headwater streams. In 2014, the United States Geological Survey (USGS) sampled 54 Piedmont streams over ten weeks and measured 475 unique organic compounds using five analytical methods. Maximum and median exposure conditions were evaluated in relation to watershed characteristics and for potential biological effects using multiple lines of evidence. Results demonstrate that mixed-contaminant exposures are ubiquitous and varied in sampled headwater streams. Approximately 56% (264) of the 475 compounds were detected at least once across all sites. Cumulative maximum concentrations ranged 1,922-162,346ngL-1 per site. Chemical occurrence significantly correlated to urban land use but was not related to presence/absence of wastewater treatment facility discharges. Designed bioactive chemicals represent about 2/3rd of chemicals detected, notably pharmaceuticals and pesticides, qualitative evidence for possible adverse biological effects. Comparative Toxicogenomics Database chemical-gene associations applied to maximum exposure conditions indicate >12,000 and 2,900 potential gene targets were predicted at least once across all sites for fish and invertebrates, respectively. Analysis of cumulative exposure-activity ratios provided additional evidence that, at a minimum, transient exposures with high probability of molecular effects to vertebrates were common. Finally, cumulative detections and concentrations correlated inversely with invertebrate metrics from in-stream surveys. The results demonstrate widespread instream exposure to extensive contaminant mixtures and compelling multiple lines of evidence for adverse effects on aquatic communities.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Misturas Complexas/toxicidade , Monitoramento Ambiental/métodos , Modelos Teóricos , Rios/química , Poluentes Químicos da Água , Misturas Complexas/análise , Ecossistema , Previsões , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Environ Pollut ; 244: 861-870, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30469280

RESUMO

Several organic contaminants (OCs) have been detected in bald eagle (Haliaeetus leucocephalus) nestling (eaglet) plasma in the upper Midwestern United States. Despite frequent and relatively high concentrations of OCs in eaglets, little is understood about potential biological effects associated with exposure. We screened an existing database of OC concentrations in eaglet plasma collected from the Midwestern United States against bioactivity information from the ToxCast database. ToxCast bioactivity information consists of concentrations expected to elicit responses across a range of biological space (e.g. cellular, developmental, etc.) obtained from a series of high throughput assays. We calculated exposure-activity ratios (EAR) by calculating the ratio of plasma concentrations to concentrations available in ToxCast. Bioactivity data were not available for all detected OCs. Therefore, our analysis provides estimates of potential bioactivity for 19 of the detected OCs in eaglet plasma. Perfluorooctanesulfonic acid (PFOS) EAR values were consistently the highest among all study areas. Maximum EAR values were ≥1 for PFOS, perfluorononanoic acid, and bisphenol A in 99.7, 0.53 and 0.26% of samples, indicating that some plasma concentrations were greater than what may be expected to elicit biological responses. About 125 gene targets, indicative of specific biological pathways, were identified as potentially being affected. Inhibition of several CYP genes, involved in xenobiotic metabolism, were most consistently identified. Other identified biological responses have potential implications for motor coordination, cardiac functions, behavior, and blood circulation. However, it is unclear what these results mean for bald eagles, given that ToxCast data are generated using mammalian-based endpoints. Despite uncertainties and limitations, this method of screening environmental data can be useful for informing future monitoring or research focused on understanding the occurrence and effects of OCs in bald eagles and other similarly-positioned trophic species.


Assuntos
Águias/sangue , Monitoramento Ambiental/métodos , Projetos de Pesquisa/tendências , Poluentes Químicos da Água/sangue , Animais , Bioensaio , Previsões , Lagos/química , Meio-Oeste dos Estados Unidos
7.
Environ Sci Technol ; 52(23): 13972-13985, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30460851

RESUMO

Safe drinking water at the point-of-use (tapwater, TW) is a United States public health priority. Multiple lines of evidence were used to evaluate potential human health concerns of 482 organics and 19 inorganics in TW from 13 (7 public supply, 6 private well self-supply) home and 12 (public supply) workplace locations in 11 states. Only uranium (61.9 µg L-1, private well) exceeded a National Primary Drinking Water Regulation maximum contaminant level (MCL: 30 µg L-1). Lead was detected in 23 samples (MCL goal: zero). Seventy-five organics were detected at least once, with median detections of 5 and 17 compounds in self-supply and public supply samples, respectively (corresponding maxima: 12 and 29). Disinfection byproducts predominated in public supply samples, comprising 21% of all detected and 6 of the 10 most frequently detected. Chemicals designed to be bioactive (26 pesticides, 10 pharmaceuticals) comprised 48% of detected organics. Site-specific cumulative exposure-activity ratios (∑EAR) were calculated for the 36 detected organics with ToxCast data. Because these detections are fractional indicators of a largely uncharacterized contaminant space, ∑EAR in excess of 0.001 and 0.01 in 74 and 26% of public supply samples, respectively, provide an argument for prioritized assessment of cumulative effects to vulnerable populations from trace-level TW exposures.


Assuntos
Água Potável , Praguicidas , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Estados Unidos , Abastecimento de Água , Local de Trabalho
8.
Environ Sci Technol ; 51(15): 8713-8724, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671818

RESUMO

Current environmental monitoring approaches focus primarily on chemical occurrence. However, based on concentration alone, it can be difficult to identify which compounds may be of toxicological concern and should be prioritized for further monitoring, in-depth testing, or management. This can be problematic because toxicological characterization is lacking for many emerging contaminants. New sources of high-throughput screening (HTS) data, such as the ToxCast database, which contains information for over 9000 compounds screened through up to 1100 bioassays, are now available. Integrated analysis of chemical occurrence data with HTS data offers new opportunities to prioritize chemicals, sites, or biological effects for further investigation based on concentrations detected in the environment linked to relative potencies in pathway-based bioassays. As a case study, chemical occurrence data from a 2012 study in the Great Lakes Basin along with the ToxCast effects database were used to calculate exposure-activity ratios (EARs) as a prioritization tool. Technical considerations of data processing and use of the ToxCast database are presented and discussed. EAR prioritization identified multiple sites, biological pathways, and chemicals that warrant further investigation. Prioritized bioactivities from the EAR analysis were linked to discrete adverse outcome pathways to identify potential adverse outcomes and biomarkers for use in subsequent monitoring efforts.


Assuntos
Bioensaio , Monitoramento Ambiental , Ensaios de Triagem em Larga Escala , Testes de Toxicidade , Biomarcadores , Great Lakes Region , Humanos , Lagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA