Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncogenesis ; 5(8): e255, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27526109

RESUMO

Stimulating tumor cell senescence and apoptosis are proven methods for therapeutically combating cancer. However, senescence and apoptosis are conventionally viewed as parallel, not sequential, processes. We have discovered that the metastasis-promoting phosphatase, PRL-3, is transcriptionally regulated by the NF-ĸB pathway in triple-negative breast cancer (TNBC) cells, and that PRL-3 knockdown elicits an autocrine tumor necrosis factor receptor 1 (TNF-R1) feedback loop that results in TNBC cell senescence followed by apoptosis. Knockdown of PRL-3 leads to rapid G1 cell cycle arrest and induction of a strong TNFα cytokine response that promotes a period of cellular senescence through TNF-R1-mediated activation of NF-ĸB. Senescent PRL-3 knockdown cells subsequently underwent apoptosis as a result of increased TNF-R1 signaling through the TNFα-associated extrinsic death pathway, shunting signaling away from the NF-ĸB cascade. These data suggest that TNF-R1 signaling dynamically re-programs after PRL-3 knockdown, from sustaining cell senescence through NF-ĸB to promoting apoptosis through TNF-R1 internalization and caspase-8 activation. The molecular mechanisms that determine the survival-death balance of TNF-R1 signaling are poorly understood, despite the fact that TNF-R1 has been extensively studied. Our results describe PRL-3 knockdown as a novel survival-death balance modifier of the TNF-R1 pathway, and show that senescent TNBC tumor cells can be sensitized to undergo apoptosis in a sequential manner.

2.
Eur J Biochem ; 255(1): 125-32, 1998 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-9692910

RESUMO

Human and Paracoccus denitrificans wild-type electron transfer flavoproteins have been investigated by 31P-NMR in the oxidised and reduced states. The 31P chemical shifts of the diphosphate moiety of the protein-bound FAD were similar in the proteins and were independent of the redox state. The chemical shifts were remarkably similar to those of ferredoxin-NADP+ reductase and, to a lesser degree, with those of NADPH-cytochrome P-450 reductase. The wild-type human electron transfer apoprotein was reconstituted with [2,4a-13C2]FAD, [4,10a-13C2]FAD, or [U-15N4]FAD. The reconstituted proteins were studied by 13C- and 15N-NMR techniques in the oxidised and reduced states. The chemical shifts were compared with those of free flavin in aqueous solution or in chloroform, and those of flavoproteins published in the literature. In the oxidised state, strong hydrogen bonds exist between residues of the apoprotein and C(2)O and N(5) of FAD. The N(1) atom is also hydrogen bonded and, as shown by X-ray data, involves the C'(4)-OH group of FAD. The sp2 hybridisation of N(10) is small compared to other flavoproteins. In the reduced state, there are strong hydrogen bonds involving C(2)O and N(5) of FAD. The N(1) atom is ionised as observed also in other flavoproteins when investigated by NMR. The intramolecular hydrogen bond between the C'(4)-OH group and the N(1) atom of FAD is maintained in the reduced state, suggesting an involvement in the stabilisation of a certain configuration of the diphosphate group of protein-bound FAD in both redox states. The N(10) atom in the reduced protein is highly sp3 hybridised in comparison to those of other flavoproteins.


Assuntos
Flavina-Adenina Dinucleotídeo/química , Flavoproteínas/química , Apoproteínas/química , Isótopos de Carbono , Transporte de Elétrons , Flavoproteínas Transferidoras de Elétrons , Flavoproteínas/genética , Humanos , Ligação de Hidrogênio , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Paracoccus denitrificans/enzimologia , Isótopos de Fósforo , Proteínas Recombinantes/química , Especificidade da Espécie
3.
J Biol Chem ; 272(42): 26425-33, 1997 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-9334218

RESUMO

Defects in electron transfer flavoprotein (ETF) or its electron acceptor, electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO), cause the human inherited metabolic disease glutaric acidemia type II. In this disease, electron transfer from nine primary flavoprotein dehydrogenases to the main respiratory chain is impaired. Among these dehydrogenases are the four chain length-specific flavoprotein dehydrogenases of fatty acid beta-oxidation. In this investigation, two mutations in the alpha subunit that have been identified in patients were expressed in Escherichia coli. Of the two mutant alleles, alphaT266M and alphaG116R, the former is the most frequent mutation found in patients with ETF deficiency. The crystal structure of human ETF shows that alphaG116 lies in a hydrophobic pocket, under a contact residue of the alpha/beta subunit interface, and that the hydroxyl hydrogen of alphaT266 is hydrogen-bonded to N(5) of the FAD; the amide backbone hydrogen of alphaT266 is hydrogen-bonded to C(4)-O of the flavin prosthetic group (Roberts, D. L., Frerman, F. E. and Kim, J-J. P. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 14355-14360). Stable expression of the alphaG116R ETF required coexpression of the chaperonins, GroEL and GroES. alphaG116R ETF folds into a conformation different from the wild type, and is catalytically inactive in crude extracts. It is unstable and could not be extensively purified. The alphaT266M ETF was purified and characterized after stabilization to proteolysis in crude extracts. Although the global structure of this mutant protein is unchanged, its flavin environment is altered as indicated by absorption and circular dichroism spectroscopy and the kinetics of flavin release from the oxidized and reduced protein. The loss of the hydrogen bond at N(5) of the flavin and the altered flavin binding increase the thermodynamic stability of the flavin semiquinone by 10-fold relative to the semiquinone of wild type ETF. The mutation has relatively little effect on the reductive half-reaction of ETF catalyzed by sarcosine and medium chain acyl-CoA dehydrogenases which reduce the flavin to the semiquinone. However, kcat/Km of ETF-QO in a coupled acyl-CoA:ubiquinone reductase assay with oxidized alphaT266M ETF as substrate is reduced 33-fold; this decrease is due in largest part to a decrease in the rate of disproportionation of the alphaT266M ETF semiquinone catalyzed by ETF-QO.


Assuntos
Flavoproteínas/genética , Mutação , Clonagem Molecular , Flavoproteínas Transferidoras de Elétrons , Flavinas/metabolismo , Flavoproteínas/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Oxirredução , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA