Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542422

RESUMO

Using an established human primary cell culture model, we previously demonstrated that the promyelocytic leukemia zinc finger (PLZF) transcription factor is a direct target of the progesterone receptor (PGR) and is essential for progestin-dependent decidualization of human endometrial stromal cells (HESCs). These in vitro findings were supported by immunohistochemical analysis of human endometrial tissue biopsies, which showed that the strongest immunoreactivity for endometrial PLZF is detected during the progesterone (P4)-dominant secretory phase of the menstrual cycle. While these human studies provided critical clinical support for the important role of PLZF in P4-dependent HESC decidualization, functional validation in vivo was not possible due to the absence of suitable animal models. To address this deficiency, we recently generated a conditional knockout mouse model in which PLZF is ablated in PGR-positive cells of the mouse (Plzf d/d). The Plzf d/d female was phenotypically analyzed using immunoblotting, real-time PCR, and immunohistochemistry. Reproductive function was tested using the timed natural pregnancy model as well as the artificial decidual response assay. Even though ovarian activity is not affected, female Plzf d/d mice exhibit an infertility phenotype due to an inability of the embryo to implant into the Plzf d/d endometrium. Initial cellular and molecular phenotyping investigations reveal that the Plzf d/d endometrium is unable to develop a transient receptive state, which is reflected at the molecular level by a blunted response to P4 exposure with a concomitant unopposed response to 17-ß estradiol. In addition to a defect in P4-dependent receptivity, the Plzf d/d endometrium fails to undergo decidualization in response to an artificial decidual stimulus, providing the in vivo validation for our earlier HESC culture findings. Collectively, our new Plzf d/d mouse model underscores the physiological importance of the PLZF transcription factor not only in endometrial stromal cell decidualization but also uterine receptivity, two uterine cellular processes that are indispensable for the establishment of pregnancy.


Assuntos
Leucemia , Fatores de Transcrição , Gravidez , Feminino , Camundongos , Animais , Humanos , Fatores de Transcrição/metabolismo , Decídua/metabolismo , Endométrio/metabolismo , Camundongos Knockout , Dedos de Zinco , Leucemia/metabolismo , Células Estromais/metabolismo
2.
Nat Commun ; 15(1): 1947, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431630

RESUMO

Cellular responses to the steroid hormones, estrogen (E2), and progesterone (P4) are governed by their cognate receptor's transcriptional output. However, the feed-forward mechanisms that shape cell-type-specific transcriptional fulcrums for steroid receptors are unidentified. Herein, we found that a common feed-forward mechanism between GREB1 and steroid receptors regulates the differential effect of GREB1 on steroid hormones in a physiological or pathological context. In physiological (receptive) endometrium, GREB1 controls P4-responses in uterine stroma, affecting endometrial receptivity and decidualization, while not affecting E2-mediated epithelial proliferation. Of mechanism, progesterone-induced GREB1 physically interacts with the progesterone receptor, acting as a cofactor in a positive feedback mechanism to regulate P4-responsive genes. Conversely, in endometrial pathology (endometriosis), E2-induced GREB1 modulates E2-dependent gene expression to promote the growth of endometriotic lesions in mice. This differential action of GREB1 exerted by a common feed-forward mechanism with steroid receptors advances our understanding of mechanisms that underlie cell- and tissue-specific steroid hormone actions.


Assuntos
Endometriose , Proteínas de Neoplasias , Receptores de Esteroides , Animais , Feminino , Humanos , Camundongos , Endometriose/genética , Endometriose/metabolismo , Endométrio/metabolismo , Estrogênios/metabolismo , Proteínas de Neoplasias/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Esteroides/metabolismo
3.
Genesis ; 62(2): e23589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523431

RESUMO

Cas9 transgenes can be employed for genome editing in mouse zygotes. However, using transgenic instead of exogenous Cas9 to produce gene-edited animals creates unique issues including ill-defined transgene integration sites, the potential for prolonged Cas9 expression in transgenic embryos, and increased genotyping burden. To overcome these issues, we generated mice harboring an oocyte-specific, Gdf9 promoter driven, Cas9 transgene (Gdf9-Cas9) targeted as a single copy into the Hprt1 locus. The X-linked Hprt1 locus was selected because it is a defined integration site that does not influence transgene expression, and breeding of transgenic males generates obligate transgenic females to serve as embryo donors. Using microinjections and electroporation to introduce sgRNAs into zygotes derived from transgenic dams, we demonstrate that Gdf9-Cas9 mediates genome editing as efficiently as exogenous Cas9 at several loci. We show that genome editing efficiency is independent of transgene inheritance, verifying that maternally derived Cas9 facilitates genome editing. We also show that paternal inheritance of Gdf9-Cas9 does not mediate genome editing, confirming that Gdf9-Cas9 is not expressed in embryos. Finally, we demonstrate that off-target mutagenesis is equally rare when using transgenic or exogenous Cas9. Together, these results show that the Gdf9-Cas9 transgene is a viable alternative to exogenous Cas9.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Feminino , Masculino , Camundongos , Animais , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas , Mutação , Zigoto/metabolismo , Animais Geneticamente Modificados , Oócitos
4.
FASEB J ; 37(12): e23313, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962238

RESUMO

Although we have shown that steroid receptor coactivator-2 (SRC-2), a member of the p160/SRC family of transcriptional coregulators, is essential for decidualization of both human and murine endometrial stromal cells, SRC-2's role in the earlier stages of the implantation process have not been adequately addressed. Using a conditional SRC-2 knockout mouse (SRC-2d/d ) in timed natural pregnancy studies, we show that endometrial SRC-2 is required for embryo attachment and adherence to the luminal epithelium. Implantation failure is associated with the persistent expression of Mucin 1 and E-cadherin on the apical surface and basolateral adherens junctions of the SRC-2d/d luminal epithelium, respectively. These findings indicate that the SRC-2d/d luminal epithelium fails to exhibit a plasma membrane transformation (PMT) state known to be required for the development of uterine receptivity. Transcriptomics demonstrated that the expression of genes involved in steroid hormone control of uterine receptivity were significantly disrupted in the SRC-2d/d endometrium as well as genes that control epithelial tight junctional biology and the emergence of the epithelial mesenchymal transition state, with the latter sharing similar biological properties with PMT. Collectively, these findings uncover a new role for endometrial SRC-2 in the induction of the luminal epithelial PMT state, which is a prerequisite for the development of uterine receptivity and early pregnancy establishment.


Assuntos
Implantação do Embrião , Útero , Animais , Feminino , Humanos , Camundongos , Gravidez , Implantação do Embrião/genética , Endométrio/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Camundongos Knockout , Coativador 2 de Receptor Nuclear/genética , Útero/metabolismo
5.
Front Endocrinol (Lausanne) ; 14: 1220622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810883

RESUMO

Diseases impacting the female reproductive tract pose a critical health concern. The establishment of in vitro models to study primary endometrial cells is crucial to understanding the mechanisms that contribute to normal endometrial function and the origins of diseases. Established protocols for endometrial stromal cell culture have been in use for decades but recent advances in endometrial organoid culture have paved the way to allowing study of the roles of both epithelial and stromal endometrial cells in vitro. Due to inter-individual variability, primary cell cultures must be established from numerous persons. Generally, endometrial epithelial and stromal cells can be isolated from an endometrial biopsy, however, this is collected in a clinical setting by an invasive transcervical procedure. Our goal was to develop a non-invasive method for the isolation of paired endometrial epithelial organoids and stromal cells from menstrual fluid collected from individual women, based on recent reports describing the isolation of endometrial epithelial organoids or endometrial stromal cells from menstrual fluid. Participants recruited by the NIEHS Clinical Research Unit were provided with a menstrual cup and instructed to collect on the heaviest day of their menstrual period. Endometrial tissue fragments in the menstrual fluid samples were washed to remove blood, minced, and digested with proteinases. Following digestion, the solution was strained to separate epithelial fragments from stromal cells. Epithelial fragments were washed, resuspended in Matrigel, and plated for organoid formation. Stromal cells were separated from residual red blood cells using a Ficoll gradient and then plated in a flask. Once established, estrogen responsiveness of endometrial epithelial organoids was assessed and the decidual response of stromal cells was evaluated. Following treatments, qPCR was performed on organoids for genes induced by estradiol and on stromal cells for genes induced by decidualization. In this manner, the relative responsiveness of paired organoid and stroma cell cultures isolated from each woman could be assessed. In conclusion, we can isolate both epithelial and stromal cells from a single menstrual fluid sample, allowing us to establish organoids and cells in a paired manner. This protocol can greatly enhance our knowledge of the role of epithelial and stromal cells alone and in coordination.


Assuntos
Endométrio , Menstruação , Feminino , Humanos , Células Epiteliais , Células Estromais , Organoides
6.
Front Endocrinol (Lausanne) ; 14: 1229033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664846

RESUMO

Endometrial function is dependent on a tight crosstalk between the epithelial and stromal cells of the endometrium. This communication is critical to ensure a fertile uterus and relies on progesterone and estrogen signaling to prepare a receptive uterus for embryo implantation in early pregnancy. One of the key mediators of this crosstalk is the orphan nuclear receptor NR2F2, which regulates uterine epithelial receptivity and stromal cell differentiation. In order to determine the molecular mechanism regulated by NR2F2, RNAseq analysis was conducted on the uterus of PgrCre;Nr2f2f/f mice at Day 3.5 of pregnancy. This transcriptomic analysis demonstrated Nr2f2 ablation in Pgr-expressing cells leads to a reduction of Hand2 expression, increased levels of Hand2 downstream effectors Fgf1 and Fgf18, and a transcriptome manifesting suppressed progesterone signaling with an altered immune baseline. ChIPseq analysis conducted on the Day 3.5 pregnant mouse uterus for NR2F2 demonstrated the majority of NR2F2 occupies genomic regions that have H3K27ac and H3K4me1 histone modifications, including the loci of major uterine transcription regulators Hand2, Egr1, and Zbtb16. Furthermore, functional analysis of an NR2F2 occupying site that is conserved between human and mouse was capable to enhance endogenous HAND2 mRNA expression with the CRISPR activator in human endometrial stroma cells. These data establish the NR2F2 dependent regulation of Hand2 in the stroma and identify a cis-acting element for this action. In summary, our findings reveal a role of the NR2F2-HAND2 regulatory axis that determines the uterine transcriptomic pattern in preparation for the endometrial receptivity.


Assuntos
Progesterona , Útero , Feminino , Humanos , Gravidez , Animais , Camundongos , Progesterona/farmacologia , Transdução de Sinais , Endométrio , Receptores Nucleares Órfãos , Fator II de Transcrição COUP
7.
Nat Commun ; 14(1): 4605, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528140

RESUMO

Estrogen and progesterone, acting through their cognate receptors the estrogen receptor α (ERα) and the progesterone receptor (PR) respectively, regulate uterine biology. Using rapid immunoprecipitation and mass spectrometry (RIME) and co-immunoprecipitation, we identified TRIM28 (Tripartite motif containing 28) as a protein which complexes with ERα and PR in the regulation of uterine function. Impairment of TRIM28 expression results in the inability of the uterus to support early pregnancy through altered PR and ERα action in the uterine epithelium and stroma by suppressing PR and ERα chromatin binding. Furthermore, TRIM28 ablation in PR-expressing uterine cells results in the enrichment of a subset of TRIM28 positive and PR negative pericytes and epithelial cells with progenitor potential. In summary, our study reveals the important roles of TRIM28 in regulating endometrial cell composition and function in women, and also implies its critical functions in other hormone regulated systems.


Assuntos
Estradiol , Receptor alfa de Estrogênio , Gravidez , Feminino , Humanos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estradiol/metabolismo , Útero/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Epitélio/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo
8.
EMBO Mol Med ; 15(10): e17094, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37589076

RESUMO

High-risk endometrial cancer has poor prognosis and is increasing in incidence. However, understanding of the molecular mechanisms which drive this disease is limited. We used genetically engineered mouse models (GEMM) to determine the functional consequences of missense and loss of function mutations in Fbxw7, Pten and Tp53, which collectively occur in nearly 90% of high-risk endometrial cancers. We show that Trp53 deletion and missense mutation cause different phenotypes, with the latter a substantially stronger driver of endometrial carcinogenesis. We also show that Fbxw7 missense mutation does not cause endometrial neoplasia on its own, but potently accelerates carcinogenesis caused by Pten loss or Trp53 missense mutation. By transcriptomic analysis, we identify LEF1 signalling as upregulated in Fbxw7/FBXW7-mutant mouse and human endometrial cancers, and in human isogenic cell lines carrying FBXW7 mutation, and validate LEF1 and the additional Wnt pathway effector TCF7L2 as novel FBXW7 substrates. Our study provides new insights into the biology of high-risk endometrial cancer and suggests that targeting LEF1 may be worthy of investigation in this treatment-resistant cancer subgroup.


Assuntos
Carcinogênese , Neoplasias do Endométrio , Feminino , Humanos , Camundongos , Animais , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Carcinogênese/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Mutação , Mutação de Sentido Incorreto
9.
FASEB J ; 37(8): e23103, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37489832

RESUMO

Receptors for estrogen and progesterone frequently interact, via Cohesin/CTCF loop extrusion, at enhancers distal from regulated genes. Loss-of-function CTCF mutation in >20% of human endometrial tumors indicates its importance in uterine homeostasis. To better understand how CTCF-mediated enhancer-gene interactions impact endometrial development and function, the Ctcf gene was selectively deleted in female reproductive tissues of mice. Prepubertal Ctcfd/d uterine tissue exhibited a marked reduction in the number of uterine glands compared to those without Ctcf deletion (Ctcff/f mice). Post-pubertal Ctcfd/d uteri were hypoplastic with significant reduction in both the amount of the endometrial stroma and number of glands. Transcriptional profiling revealed increased expression of stem cell molecules Lif, EOMES, and Lgr5, and enhanced inflammation pathways following Ctcf deletion. Analysis of the response of the uterus to steroid hormone stimulation showed that CTCF deletion affects a subset of progesterone-responsive genes. This finding indicates (1) Progesterone-mediated signaling remains functional following Ctcf deletion and (2) certain progesterone-regulated genes are sensitive to Ctcf deletion, suggesting they depend on gene-enhancer interactions that require CTCF. The progesterone-responsive genes altered by CTCF ablation included Ihh, Fst, and Errfi1. CTCF-dependent progesterone-responsive uterine genes enhance critical processes including anti-tumorigenesis, which is relevant to the known effectiveness of progesterone in inhibiting progression of early-stage endometrial tumors. Overall, our findings reveal that uterine Ctcf plays a key role in progesterone-dependent expression of uterine genes underlying optimal post-pubertal uterine development.


Assuntos
Cromatina , Neoplasias do Endométrio , Humanos , Feminino , Animais , Camundongos , Progesterona , Útero , Endométrio
10.
Nat Commun ; 14(1): 3220, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270588

RESUMO

Progesterone (P4) is required for the preparation of the endometrium for a successful pregnancy. P4 resistance is a leading cause of the pathogenesis of endometrial disorders like endometriosis, often leading to infertility; however, the underlying epigenetic cause remains unclear. Here we demonstrate that CFP1, a regulator of H3K4me3, is required for maintaining epigenetic landscapes of P4-progesterone receptor (PGR) signaling networks in the mouse uterus. Cfp1f/f;Pgr-Cre (Cfp1d/d) mice showed impaired P4 responses, leading to complete failure of embryo implantation. mRNA and chromatin immunoprecipitation sequencing analyses showed that CFP1 regulates uterine mRNA profiles not only in H3K4me3-dependent but also in H3K4me3-independent manners. CFP1 directly regulates important P4 response genes, including Gata2, Sox17, and Ihh, which activate smoothened signaling pathway in the uterus. In a mouse model of endometriosis, Cfp1d/d ectopic lesions showed P4 resistance, which was rescued by a smoothened agonist. In human endometriosis, CFP1 was significantly downregulated, and expression levels between CFP1 and these P4 targets are positively related regardless of PGR levels. In brief, our study provides that CFP1 intervenes in the P4-epigenome-transcriptome networks for uterine receptivity for embryo implantation and the pathogenesis of endometriosis.


Assuntos
Endometriose , Progesterona , Transativadores , Animais , Feminino , Humanos , Camundongos , Gravidez , Implantação do Embrião/genética , Endometriose/genética , Endometriose/metabolismo , Endométrio/metabolismo , Epigênese Genética , Progesterona/farmacologia , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , RNA Mensageiro/metabolismo , Útero/metabolismo , Transativadores/genética
11.
Biol Reprod ; 108(4): 575-583, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36721982

RESUMO

Genetically engineered mice are widely used to study the impact of altered gene expression in vivo. Within the reproductive tract, the Amhr2-IRES-Cre(Bhr) mouse model is used to ablate genes in ovarian granulosa and uterine stromal cells. There are reports of Amhr2-IRES-Cre(Bhr) inducing recombination in non-target tissues. We hypothesized the inefficiency or off-target Cre action in Amhr2-IRES-Cre(Bhr) mice is due to lack of recombination in every cell that expresses Amhr2. To investigate, we created a new targeted knock-in mouse model, Amhr2-iCre(Fjd), by inserting a codon-optimized improved Cre (iCre) into exon 1 of the Amhr2 gene. Amhr2-iCre(Fjd)/+ males were mated with females that contain a lox-stop-lox cassette in the Sun1 gene so when DNA recombination occurs, SUN1-sfGFP fusion protein is expressed in a peri-nuclear pattern. In adult Amhr2-iCre(Fjd)/+ Sun1LsL/+ mice, Amhr2-iCre(Fjd)-mediated genetic recombination was apparent in uterine epithelial, stromal, and myometrial cells, while Amhr2-IRES-Cre(Bhr)/+ Sun1LsL/+ females demonstrated inter-mouse variability of Amhr2-IRES-Cre(Bhr) activity in uterine cells. Fluorescence was observed in Amhr2-iCre(Fjd)-positive mice at post-natal Day 1, indicating global genetic recombination, while fluorescence of individual Amhr2-IRES-Cre(Bhr)-positive pups varied. To determine the developmental stage that genetic recombination first occurs, Sun1LsL/LsL females were super-ovulated and mated with Amhr2-IRES-Cre(Bhr)/+ or Amhr2(iCre/+)Fjd males, then putative zygotes were collected and cultured. In the four-cell embryo, Amhr2-iCre(Fjd) and Amhr2-IRES-Cre(Bhr) activities were apparent in 100% and 25-100% of cells, respectively. In conclusion, Amhr2-IRES-Cre(Bhr) or Amhr2-iCre(Fjd) driven by the Amhr2 promoter is active in the early embryo and can lead to global genetic modification, rendering this transgenic mouse model ineffective.


Assuntos
Receptores de Fatores de Crescimento Transformadores beta , Recombinases , Feminino , Masculino , Camundongos , Animais , Camundongos Transgênicos , Integrases/genética , Integrases/metabolismo , Proteínas Serina-Treonina Quinases
12.
Front Reprod Health ; 4: 1033581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505394

RESUMO

Steroid receptor coactivator-3 (SRC-3; also known as NCOA3 or AIB1) is a member of the multifunctional p160/SRC family of coactivators, which also includes SRC-1 and SRC-2. Clinical and cell-based studies as well as investigations on mice have demonstrated pivotal roles for each SRC in numerous physiological and pathophysiological contexts, underscoring their functional pleiotropy. We previously demonstrated the critical involvement of SRC-2 in murine embryo implantation as well as in human endometrial stromal cell (HESC) decidualization, a cellular transformation process required for trophoblast invasion and ultimately placentation. We show here that, like SRC-2, SRC-3 is expressed in the epithelial and stromal cellular compartments of the human endometrium during the proliferative and secretory phase of the menstrual cycle as well as in cultured HESCs. We also found that SRC-3 depletion in cultured HESCs results in a significant attenuation in the induction of a wide-range of established biomarkers of decidualization, despite exposure of these cells to a deciduogenic stimulus and normal progesterone receptor expression. These molecular findings are supported at the cellular level by the inability of HESCs to morphologically transform from a stromal fibroblastoid cell to an epithelioid decidual cell when endogenous SRC-3 levels are markedly reduced. To identify genes, signaling pathways and networks that are controlled by SRC-3 and potentially important for hormone-dependent decidualization, we performed RNA-sequencing on HESCs in which SRC-3 levels were significantly reduced at the time of administering the deciduogenic stimulus. Comparing HESC controls with HESCs deficient in SRC-3, gene enrichment analysis of the differentially expressed gene set revealed an overrepresentation of genes involved in chromatin remodeling, cell proliferation/motility, and programmed cell death. These predictive bioanalytic results were confirmed by the demonstration that SRC-3 is required for the expansion, migratory and invasive activities of the HESC population, cellular properties that are required in vivo in the formation or functioning of the decidua. Collectively, our results support SRC-3 as an important coregulator in HESC decidualization. Since perturbation of normal homeostatic levels of SRC-3 is linked with common gynecological disorders diagnosed in reproductive age women, this endometrial coregulator-along with its new molecular targets described here-may open novel clinical avenues in the diagnosis and/or treatment of a non-receptive endometrium, particularly in patients presenting non-aneuploid early pregnancy loss.

13.
F S Sci ; 3(4): 349-366, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089208

RESUMO

OBJECTIVE: To systematically analyze the cell composition and transcriptome of primary human endometrial stromal cells (HESCs) and transformed human endometrial stromal cells (THESCs). DESIGN: The primary HESCs from 3 different donors and 1 immortalized THESC were collected from the human endometrium at the midsecretory phase and cultured in vitro. SETTING: Academic research laboratory. PATIENT(S): None. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Single-cell ribonucleic acid sequencing analysis. RESULT(S): We found the individual differences among the primary HESCs and bigger changes between the primary HESCs and THESCs. Cell clustering with or without integration identified cell clusters belonging to mature, proliferative, and active fibroblasts that were conserved across all samples at different stages of the cell cycles with intensive cell communication signals. All primary HESCs and THESCs can be correlated with some subpopulations of fibroblasts in the human endometrium. CONCLUSION(S): Our study indicated that the primary HESCs and THESCs displayed conserved cell characters and distinct cell clusters. Mature, proliferative, and active fibroblasts at different stages or cell cycles were detected across all samples and presented with a complex cell communication network. The cultured HESCs and THESCs retained the features of some subpopulations within the human endometrium.


Assuntos
Endométrio , Células Estromais , Feminino , Humanos , Endométrio/metabolismo , Células Estromais/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Transcriptoma
14.
PNAS Nexus ; 1(4): pgac155, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36120506

RESUMO

The uterine myometrium expands and maintains contractile quiescence before parturition. While the steroid hormone progesterone blocks labor, the role of progesterone signaling in myometrial expansion remains elusive. This study investigated the myometrial functions of the progesterone receptor, PGR. Pgr ablation in mouse smooth muscle leads to subfertility, oviductal embryo retention, and impaired myometrial adaptation to pregnancy. While gross morphology between mutant and control uteri are comparable, mutant uteri manifest a decrease of 76.6% oxytocin-stimulated contractility in a pseudopregnant context with a reduced expression of intracellular calcium homeostasis genes including Pde5a and Plcb4. At mid-pregnancy, the mutant myometrium exhibits discontinuous myofibers and disarrayed extracellular matrix at the conceptus site. Transcriptome of the mutant mid-pregnant uterine wall manifests altered muscle and extracellular matrix profiles and resembles that of late-pregnancy control tissues. A survey of PGR occupancy, H3K27ac histone marks, and chromatin looping annotates cis-acting elements that may direct gene expression of mid-pregnancy uteri for uterine remodeling. Further analyses suggest that major muscle and matrix regulators Myocd and Ccn2 and smooth muscle building block genes are PGR direct downstream targets. Cataloging enhancers that are topologically associated with progesterone downstream genes reveals distinctive patterns of transcription factor binding motifs in groups of enhancers and identifies potential regulatory partners of PGR outside its occupying sites. Finally, conserved correlations are found between estimated PGR activities and RNA abundance of downstream muscle and matrix genes in human myometrial tissues. In summary, PGR is pivotal to direct the molecular program for the uterus to remodel and support pregnancy.

15.
J Steroid Biochem Mol Biol ; 224: 106160, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931328

RESUMO

Myometrial contraction is stringently controlled throughout pregnancy and parturition. Progesterone signaling, effecting through the progesterone receptor (PR), is pivotal in modulating uterine activity. Evidence has shown that two major PR isoforms, PR-A and PR-B, have distinct activities on gene regulation, and the ratio between these isoforms determines the contractility of the myometrium at different gestational stages. Herein, we focus on the regulation of PR activity in the myometrium, especially the differential actions of the two PR isoforms, which maintain uterine quiescence during pregnancy and regulate the switch to a contractile state at the onset of labor. To demonstrate the PR regulatory network and its mechanisms of actions on myometrial activity, we summarized the findings into three parts: Regulation of PR Expression and Isoform Levels, Progesterone Receptor Interacting Factors, and Biological Processes Regulated by Myometrial Progesterone Receptor Isoforms. Recent genomic and epigenomic data, from human specimens and mouse models, are recruited to support the existing knowledge and offer new insights and future directions in myometrial biology.


Assuntos
Contração Muscular , Miométrio , Parto , Gravidez , Receptores de Progesterona , Animais , Feminino , Humanos , Camundongos , Gravidez/genética , Gravidez/metabolismo , Miométrio/metabolismo , Parto/genética , Parto/metabolismo , Progesterona/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Contração Muscular/genética
16.
Endocrinology ; 163(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35895287

RESUMO

Endometrial health is affected by molecular processes that underlie estrogen responses. We assessed estrogen regulation of endometrial function by integrating the estrogen receptor α (ESR1) cistromes and transcriptomes of endometrial biopsies taken from the proliferative and mid-secretory phases of the menstrual cycle together with hormonally stimulated endometrial epithelial organoids. The cycle stage-specific ESR1 binding sites were determined by chromatin immunoprecipitation and next-generation sequencing and then integrated with changes in gene expression from RNA sequencing data to infer candidate ESR1 targets in normal endometrium. Genes with ESR1 binding in whole endometrium were enriched for chromatin modification and regulation of cell proliferation. The distribution of ESR1 binding sites in organoids was more distal from gene promoters when compared to primary endometrium and was more similar to the proliferative than the mid-secretory phase ESR1 cistrome. Inferred organoid estrogen/ESR1 candidate target genes affected formation of cellular protrusions and chromatin modification. Comparison of signaling effected by candidate ESR1 target genes in endometrium vs organoids reveals enrichment of both overlapping and distinct responses. Our analysis of the ESR1 cistromes and transcriptomes from endometrium and organoids provides important resources for understanding how estrogen affects endometrial health and function.


Assuntos
Receptor alfa de Estrogênio , Organoides , Cromatina/genética , Cromatina/metabolismo , Endométrio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Feminino , Humanos , Ciclo Menstrual/fisiologia , Organoides/metabolismo
17.
Cells ; 11(11)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681455

RESUMO

For pregnancy to be established, uterine cells respond to the ovarian hormones, estrogen, and progesterone, via their nuclear receptors, the estrogen receptor (ESR1) and progesterone receptor (PGR). ESR1 and PGR regulate genes by binding chromatin at genes and at distal enhancer regions, which interact via dynamic 3-dimensional chromatin structures. Endometrial epithelial cells are the initial site of embryo attachment and invasion, and thus understanding the processes that yield their receptive state is important. Here, we cultured and treated organoids derived from human epithelial cells, isolated from endometrial biopsies, with estrogen and progesterone and evaluated their transcriptional profiles, their PGR cistrome, and their chromatin conformation. Progesterone attenuated estrogen-dependent gene responses but otherwise minimally impacted the organoid transcriptome. PGR ChIPseq peaks were co-localized with previously described organoid ESR1 peaks, and most PGR and ESR1 peaks were in B (inactive) compartment regions of chromatin. Significantly more ESR1 peaks were assigned to estrogen-regulated genes by considering chromatin loops identified using HiC than were identified using ESR1 peak location relative to closest genes. Overall, the organoids model allowed a definition of the chromatin regulatory components governing hormone responsiveness.


Assuntos
Organoides , Progesterona , Cromatina/metabolismo , Endométrio/metabolismo , Estrogênios/metabolismo , Feminino , Humanos , Organoides/metabolismo , Gravidez , Progesterona/metabolismo , Progesterona/farmacologia , Receptores de Estrogênio/metabolismo
18.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35575097

RESUMO

The uterine luminal epithelium folds characteristically in mammals, including humans, horses and rodents. Improper uterine folding in horses results in pregnancy failure, but the precise function of folds remains unknown. Here, we uncover dynamic changes in the 3D uterine folding pattern during early pregnancy with the entire lumen forming pre-implantation transverse folds along the mesometrial-antimesometrial axis. Using a time course, we show that transverse folds are formed before embryo spacing, whereas implantation chambers form as the embryo begins attachment. Thus, folds and chambers are two distinct structures. Transverse folds resolve to form a flat implantation region, after which an embryo arrives at its center to attach and form the post-implantation chamber. Our data also suggest that the implantation chamber facilitates embryo rotation and its alignment along the uterine mesometrial-antimesometrial axis. Using WNT5A- and RBPJ-deficient mice that display aberrant folds, we show that embryos trapped in longitudinal folds display misalignment of the embryo-uterine axes, abnormal chamber formation and defective post-implantation morphogenesis. These mouse models with disrupted uterine folding provide an opportunity to understand uterine structure-based mechanisms that are crucial for implantation and pregnancy success. This article has an associated 'The people behind the papers' interview.


Assuntos
Implantação do Embrião , Útero , Animais , Embrião de Mamíferos , Epitélio , Feminino , Cavalos , Humanos , Mamíferos , Camundongos , Gravidez
19.
Genesis ; 60(4-5): e23473, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35475540

RESUMO

An estimated 75% of unsuccessful pregnancies are due to implantation failure. Investigating the causes of implantation failure is difficult as decidualization and embryo implantation is a dynamic process. Here, we describe a new decidua-specific iCre recombinase mouse strain. Utilizing CRISPR/Cas9-based genome editing, a mouse strain was developed that expresses iCre recombinase under the control of the endogenous prolactin family 8, subfamily a, member 2 (Prl8a2) promoter. iCre recombinase activity was examined by crossing with mTmG/+ or Sun1-GFP reporter alleles. iCre activity initiated reporter expression at gestational day 5.5 in the primary decidual zone and continued into mid-gestation (gestational day 9.5), with expression highly concentrated in the anti-mesometrial region. No reporter expression was observed in the ovary, oviduct, pituitary, or skeletal muscle, supporting the tissue specificity of the Prl8a2iCre in the primary decidual zone. This novel iCre line will be a valuable tool for in vivo genetic manipulation and lineage tracing to investigate functions of genetic networks and cellular dynamics associated with decidualization and infertility.


Assuntos
Integrases , Prolactina , Animais , Decídua/metabolismo , Feminino , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Gravidez , Prolactina/genética , Recombinação Genética
20.
Biol Reprod ; 107(2): 529-545, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35357464

RESUMO

Uterine dysfunctions lead to fertility disorders and pregnancy complications. Normal uterine functions at pregnancy depend on crosstalk among multiple cell types in uterine microenvironments. Here, we performed the spatial transcriptomics and single-cell RNA-seq assays to determine local gene expression profiles at the embryo implantation site of the mouse uterus on pregnancy day 7.5 (D7.5). The spatial transcriptomic annotation identified 11 domains of distinct gene signatures, including a mesometrial myometrium, an anti-mesometrial myometrium, a mesometrial decidua enriched with natural killer cells, a vascular sinus zone for maternal vessel remodeling, a fetal-maternal interface, a primary decidual zone, a transition decidual zone, a secondary decidual zone, undifferentiated stroma, uterine glands, and the embryo. The scRNA-Seq identified 12 types of cells in the D7.5 uterus including three types of stromal fibroblasts with differentiated and undifferentiated markers, one cluster of epithelium including luminal and glandular epithelium, mesothelium, endothelia, pericytes, myelomonocytic cell, natural killer cells, and lymphocyte B. These single-cell RNA signatures were then utilized to deconvolute the cell-type compositions of each individual uterine microenvironment. Functional annotation assays on spatial transcriptomic data revealed uterine microenvironments with distinguished metabolic preferences, immune responses, and various cellular behaviors that are regulated by region-specific endocrine and paracrine signals. Global interactome among regions is also projected based on the spatial transcriptomic data. This study provides high-resolution transcriptome profiles with locality information at the embryo implantation site to facilitate further investigations on molecular mechanisms for normal pregnancy progression.


Assuntos
Transcriptoma , Útero , Animais , Decídua/fisiologia , Implantação do Embrião/genética , Epitélio , Feminino , Células Matadoras Naturais , Camundongos , Miométrio , Gravidez , Útero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA