Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 13(10): 911, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309486

RESUMO

Type 1 diabetes is a complex disease characterized by the lack of endogenous insulin secreted from the pancreatic ß-cells. Although ß-cell targeted autoimmune processes and ß-cell dysfunction are known to occur in type 1 diabetes, a complete understanding of the cell-to-cell interactions that support pancreatic function is still lacking. To characterize the pancreatic endocrine compartment, we studied pancreata from healthy adult donors and investigated a single cell surface adhesion molecule, desmoglein-2 (DSG2). Genetically-modified mice lacking Dsg2 were examined for islet cell mass, insulin production, responses to glucose, susceptibility to a streptozotocin-induced mouse model of hyperglycaemia, and ability to cure diabetes in a syngeneic transplantation model. Herein, we have identified DSG2 as a previously unrecognized adhesion molecule that supports ß-cells. Furthermore, we reveal that DSG2 is within the top 10 percent of all genes expressed by human pancreatic islets and is expressed by the insulin-producing ß-cells but not the somatostatin-producing δ-cells. In a Dsg2 loss-of-function mice (Dsg2lo/lo), we observed a significant reduction in the number of pancreatic islets and islet size, and consequently, there was less total insulin content per islet cluster. Dsg2lo/lo mice also exhibited a reduction in blood vessel barrier integrity, an increased incidence of streptozotocin-induced diabetes, and islets isolated from Dsg2lo/lo mice were more susceptible to cytokine-induced ß-cell apoptosis. Following transplantation into diabetic mice, islets isolated from Dsg2lo/lo mice were less effective than their wildtype counterparts at curing diabetes. In vitro assays using the Beta-TC-6 murine ß-cell line suggest that DSG2 supports the actin cytoskeleton as well as the release of cytokines and chemokines. Taken together, our study suggests that DSG2 is an under-appreciated regulator of ß-cell function in pancreatic islets and that a better understanding of this adhesion molecule may provide new opportunities to combat type 1 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Animais , Humanos , Camundongos , Sobrevivência Celular , Desmogleínas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Estreptozocina
2.
Mol Oncol ; 16(6): 1221-1240, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34245117

RESUMO

Multiple myeloma (MM) is the second most common haematological malignancy and is an incurable disease of neoplastic plasma cells (PC). Newly diagnosed MM patients currently undergo lengthy genetic testing to match chromosomal mutations with the most potent drug/s to decelerate disease progression. With only 17% of MM patients surviving 10-years postdiagnosis, faster detection and earlier intervention would unequivocally improve outcomes. Here, we show that the cell surface protein desmoglein-2 (DSG2) is overexpressed in ~ 20% of bone marrow biopsies from newly diagnosed MM patients. Importantly, DSG2 expression was strongly predictive of poor clinical outcome, with patients expressing DSG2 above the 70th percentile exhibiting an almost 3-fold increased risk of death. As a prognostic factor, DSG2 is independent of genetic subtype as well as the routinely measured biomarkers of MM activity (e.g. paraprotein). Functional studies revealed a nonredundant role for DSG2 in adhesion of MM PC to endothelial cells. Together, our studies suggest DSG2 to be a potential cell surface biomarker that can be readily detected by flow cytometry to rapidly predict disease trajectory at the time of diagnosis.


Assuntos
Células Endoteliais , Mieloma Múltiplo , Desmogleína 2/genética , Desmogleína 2/metabolismo , Células Endoteliais/metabolismo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética
3.
BMC Cancer ; 21(1): 765, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215227

RESUMO

BACKGROUND: The formation of blood vessels within solid tumors directly contributes to cancer growth and metastasis. Until recently, tumor vasculature was thought to occur exclusively via endothelial cell (EC) lined structures (i.e. angiogenesis), but a second source of tumor vasculature arises from the cancer cells themselves, a process known as vasculogenic mimicry (VM). While it is generally understood that the function of VM vessels is the same as that of EC-lined vessels (i.e. to supply oxygen and nutrients to the proliferating cancer cells), the molecular mechanisms underpinning VM are yet to be fully elucidated. METHODS: Human VM-competent melanoma cell lines were examined for their VM potential using the in vitro angiogenesis assays (Matrigel), together with inhibition studies using small interfering RNA and blocking monoclonal antibodies. Invasion assays and adhesion assays were used to examine cancer cell function. RESULTS: Herein we demonstrate that CD36, a cell surface glycoprotein known to promote angiogenesis by ECs, also supports VM formation by human melanoma cancer cells. In silico analysis of CD36 expression within the melanoma cohort of The Cancer Genome Atlas suggests that melanoma patients with high expression of CD36 have a poorer clinical outcome. Using in vitro 'angiogenesis' assays and CD36-knockdown approaches, we reveal that CD36 supports VM formation by human melanoma cells as well as adhesion to, and invasion through, a cancer derived extracellular matrix substrate. Interestingly, thrombospondin-1 (TSP-1), a ligand for CD36 on ECs that inhibits angiogenesis, has no effect on VM formation. Further investigation revealed a role for laminin, but not collagen or fibronectin, as ligands for CD36 expressing melanoma cells. CONCLUSIONS: Taken together, this study suggests that CD36 is a novel regulator of VM by melanoma cancer cells that is facilitated, at least in part, via integrin-α3 and laminin. Unlike angiogenesis, VM is not perturbed by the presence of TSP-1, thus providing new information on differences between these two processes of tumor vascularization which may be exploited to combat cancer progression.


Assuntos
Antígenos CD36/metabolismo , Matriz Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Melanoma , Microambiente Tumoral
4.
Bone Rep ; 14: 101096, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34136591

RESUMO

Bone defects arising from fractures or disease represent a significant problem for surgeons to manage and are a substantial economic burden on the healthcare economy. Recent advances in the development of biomaterial substitutes provides an attractive alternative to the current "gold standard" autologous bone grafting. Despite on-going research, we are yet to identify cost effective biocompatible, osteo-inductive factors that stimulate controlled, accelerated bone regeneration.We have recently reported that enzymes with peroxidase activity possess previously unrecognised roles in extracellular matrix biosynthesis, angiogenesis and osteoclastogenesis, which are essential processes in bone remodelling and repair. Here, we report for the first time, that plant-derived soybean peroxidase (SBP) possesses pro-osteogenic ability by promoting collagen I biosynthesis and matrix mineralization of human osteoblasts in vitro. Mechanistically, SBP regulates osteogenic genes responsible for inflammation, extracellular matrix remodelling and ossification, which are necessary for normal bone healing. Furthermore, SBP was shown to have osteo-inductive properties, that when combined with commercially available biphasic calcium phosphate (BCP) granules can accelerate bone repair in a critical size long bone defect ovine model. Micro-CT analysis showed that SBP when combined with commercially available biphasic calcium phosphate (BCP) granules significantly increased bone formation within the defects as early as 4 weeks compared to BCP alone. Histomorphometric assessment demonstrated accelerated bone formation prominent at the defect margins and surrounding individual BCP granules, with evidence of intramembranous ossification. These results highlight the capacity of SBP to be an effective regulator of osteoblastic function and may be beneficial as a new and cost effective osteo-inductive agent to accelerate repair of large bone defects.

5.
Cancer Med ; 6(9): 2164-2176, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28799237

RESUMO

Tumor hypoxia is a major cause of treatment failure for a variety of malignancies. However, hypoxia also leads to treatment opportunities as demonstrated by the development of compounds that target regions of hypoxia within tumors. Evofosfamide is a hypoxia-activated prodrug that is created by linking the hypoxia-seeking 2-nitroimidazole moiety to the cytotoxic bromo-isophosphoramide mustard (Br-IPM). When evofosfamide is delivered to hypoxic regions of tumors, the DNA cross-linking toxin, Br-IPM, is released leading to cell death. This study assessed the anticancer efficacy of evofosfamide in combination with the Proapoptotic Receptor Agonists (PARAs) dulanermin and drozitumab against human osteosarcoma in vitro and in an intratibial murine model of osteosarcoma. Under hypoxic conditions in vitro, evofosfamide cooperated with dulanermin and drozitumab, resulting in the potentiation of cytotoxicity to osteosarcoma cells. In contrast, under the same conditions, primary human osteoblasts were resistant to treatment. Animals transplanted with osteosarcoma cells directly into their tibiae developed mixed osteosclerotic/osteolytic bone lesions and consequently developed lung metastases 3 weeks post cancer cell transplantation. Tumor burden in the bone was reduced by evofosfamide treatment alone and in combination with drozitumab and prevented osteosarcoma-induced bone destruction while also reducing the growth of pulmonary metastases. These results suggest that evofosfamide may be an attractive therapeutic agent, with strong anticancer activity alone or in combination with either drozitumab or dulanermin against osteosarcoma.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Nitroimidazóis/administração & dosagem , Osteossarcoma/tratamento farmacológico , Mostardas de Fosforamida/administração & dosagem , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Nitroimidazóis/farmacologia , Mostardas de Fosforamida/farmacologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Oncol ; 50(4): 1191-1200, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28260049

RESUMO

Myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, well known for their antimicrobial activity, are released in high quantities by infiltrating immune cells in breast cancer. However, the functional importance of their presence within the tumour microenvironment is unclear. We have recently described a new role for peroxidases as key regulators of fibroblast and endothelial cell functionality. In the present study, we investigate for the first time, the ability of peroxidases to promote breast cancer development and progression. Using the 4T1 syngeneic murine orthotopic breast cancer model, we examined whether increased levels of peroxidases in developing mammary tumours influences primary tumour growth and metastasis. We showed that MPO and EPO stimulation increased mammary tumour growth and enhanced lung metastases, effects that were associated with reduced tumour necrosis, increased collagen deposition and neo-vascularisation within the primary tumour. In vitro, peroxidase treatment, robustly stimulated human mammary fibroblast migration and collagen type I and type VI secretion. Mechanistically, peroxidases induced the transcription of pro-tumorigenic and metastatic MMP1, MMP3 and COX-2 genes. Taken together, these findings identify peroxidases as key contributors to cancer progression by augmenting pro-tumorigenic collagen production and angiogenesis. Importantly, this identifies inflammatory peroxidases as therapeutic targets in breast cancer therapy.


Assuntos
Neoplasias da Mama/metabolismo , Peroxidase de Eosinófilo/metabolismo , Neoplasias Pulmonares/secundário , Neovascularização Patológica/metabolismo , Peroxidase/metabolismo , Proteínas Recombinantes/metabolismo , Microambiente Tumoral , Animais , Mama/irrigação sanguínea , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Movimento Celular , Colágeno Tipo I/metabolismo , Colágeno Tipo IV/metabolismo , Ciclo-Oxigenase 2/metabolismo , Progressão da Doença , Feminino , Fibroblastos , Humanos , Neoplasias Mamárias Experimentais , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Cultura Primária de Células
7.
Mol Cell Endocrinol ; 440: 8-15, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27836774

RESUMO

Myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, well known for their antimicrobial activity, are released in abundance by innate immune infiltrates at sites of inflammation and injury. We have discovered new and previously unrecognised roles for heme peroxidases in extracellular matrix biosynthesis, angiogenesis, and bone mineralisation, all of which play an essential role in skeletal integrity. In this study we used in vitro models of osteoclastogenesis to investigate the effects of heme peroxidase enzymes on osteoclast differentiation and bone resorbing activity, pertinent to skeletal development and remodelling. Receptor activator of nuclear factor kappa B-ligand (RANKL) stimulates the formation of tartate-resistant acid phosphatase (TRAP) positive multinucleated cells and increases bone resorption when cultured with human peripheral blood mononuclear cells (PBMCs) or the RAW264.7 murine monocytic cell line. When RANKL was added in combination with either MPO or EPO, a dose-dependent inhibition of osteoclast differentiation and bone resorption was observed. Notably, peroxidases had no effect on the bone resorbing activity of mature osteoclasts, suggesting that the inhibitory effect of the peroxidases was limited to osteoclast precursor cells. Mechanistically, we observed that osteoclast precursor cells readily internalize peroxidases, and inhibited the phosphorylation of JNK, p38 MAPK and ERK1/2, important signalling molecules central to osteoclastogenesis. Our findings suggest that peroxidase enzymes, like MPO and EPO, may play a fundamental role in inhibiting RANKL-induced osteoclast differentiation at inflammatory sites of bone fracture and injury. Therefore, peroxidase enzymes could be considered as potential therapeutic agents to treat osteolytic bone disease and aberrant bone resorption.


Assuntos
Reabsorção Óssea/enzimologia , Reabsorção Óssea/patologia , Diferenciação Celular , Osteoclastos/enzimologia , Osteoclastos/patologia , Peroxidase/metabolismo , Animais , Endocitose/efeitos dos fármacos , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Ligante RANK/farmacologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
8.
Cancer Lett ; 386: 141-150, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27865798

RESUMO

Bone metastases occur in over 75% of patients with advanced breast cancer and are responsible for high levels of morbidity and mortality. In this study, ex vivo expanded cytotoxic Vγ9Vδ2 T cells isolated from human peripheral blood were tested for their anti-cancer efficacy in combination with zoledronic acid (ZOL), using a mouse model of osteolytic breast cancer. In vitro, expanded Vγ9Vδ2 T cells were cytotoxic against a panel of human breast cancer cell lines, and ZOL pre-treatment further sensitised breast cancer cells to killing by Vγ9Vδ2 T cells. Vγ9Vδ2 T cells adoptively transferred into NOD/SCID mice localised to osteolytic breast cancer lesions in the bone, and multiple infusions of Vγ9Vδ2 T cells reduced tumour growth in the bone. ZOL pre-treatment potentiated the anti-cancer efficacy of Vγ9Vδ2 T cells, with mice showing further reductions in tumour burden. Mice treated with the combination also had reduced tumour burden of secondary pulmonary metastases, and decreased bone degradation. Our data suggests that adoptive transfer of Vγ9Vδ2 T cell in combination with ZOL may prove an effective immunotherapeutic approach for the treatment of breast cancer bone metastases.


Assuntos
Antineoplásicos/farmacologia , Conservadores da Densidade Óssea/farmacologia , Neoplasias Ósseas/prevenção & controle , Neoplasias da Mama/terapia , Difosfonatos/farmacologia , Imidazóis/farmacologia , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/prevenção & controle , Osteólise/prevenção & controle , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T Citotóxicos/transplante , Animais , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Citotoxicidade Imunológica , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Ativação Linfocitária , Camundongos Endogâmicos NOD , Camundongos SCID , Osteólise/imunologia , Osteólise/patologia , Fenótipo , Linfócitos T Citotóxicos/imunologia , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Zoledrônico
9.
Cancer Med ; 5(3): 534-45, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26749324

RESUMO

Tumor hypoxia is a major cause of treatment failure for a variety of malignancies. However, hypoxia offers treatment opportunities, exemplified by the development of compounds that target hypoxic regions within tumors. Evofosfamide (TH-302) is a prodrug created by the conjugation of 2-nitroimidazole to bromo-isophosphoramide mustard (Br-IPM). When evofosfamide is delivered to hypoxic regions, the DNA cross-linking effector, Br-IPM, is released. This study assessed the cytotoxic activity of evofosfamide in vitro and its antitumor activity against osteolytic breast cancer either alone or in combination with paclitaxel in vivo. A panel of human breast cancer cell lines were treated with evofosfamide under hypoxia and assessed for cell viability. Osteolytic MDA-MB-231-TXSA cells were transplanted into the mammary fat pad, or into tibiae of mice, allowed to establish and treated with evofosfamide, paclitaxel, or both. Tumor burden was monitored using bioluminescence, and cancer-induced bone destruction was measured using micro-CT. In vitro, evofosfamide was selectively cytotoxic under hypoxic conditions. In vivo evofosfamide was tumor suppressive as a single agent and cooperated with paclitaxel to reduce mammary tumor growth. Breast cancer cells transplanted into the tibiae of mice developed osteolytic lesions. In contrast, treatment with evofosfamide or paclitaxel resulted in a significant delay in tumor growth and an overall reduction in tumor burden in bone, whereas combined treatment resulted in a significantly greater reduction in tumor burden in the tibia of mice. Evofosfamide cooperates with paclitaxel and exhibits potent tumor suppressive activity against breast cancer growth in the mammary gland and in bone.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Neoplasias da Mama/tratamento farmacológico , Nitroimidazóis/administração & dosagem , Paclitaxel/administração & dosagem , Mostardas de Fosforamida/administração & dosagem , Animais , Antineoplásicos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Nitroimidazóis/farmacologia , Paclitaxel/farmacologia , Mostardas de Fosforamida/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Calcif Tissue Int ; 98(3): 294-305, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26643175

RESUMO

The early recruitment of inflammatory cells to sites of bone fracture and trauma is a critical determinant in successful fracture healing. Released by infiltrating inflammatory cells, myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, whose functional involvement in bone repair has mainly been studied in the context of providing a mechanism for oxidative defense against invading microorganisms. We report here novel findings that show peroxidase enzymes have the capacity to stimulate osteoblastic cells to secrete collagen I protein and generate a mineralized extracellular matrix in vitro. Mechanistic studies conducted using cultured osteoblasts show that peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl hydroxylase-dependent manner, which does not require ascorbic acid. Our studies demonstrate that osteoblasts rapidly bind and internalize both MPO and EPO, and the catalytic activity of these peroxidase enzymes is essential to support collagen I biosynthesis and subsequent release of collagen by osteoblasts. We show that EPO is capable of regulating osteogenic gene expression and matrix mineralization in culture, suggesting that peroxidase enzymes may play an important role not only in normal bone repair, but also in the progression of pathological states where infiltrating inflammatory cells are known to deposit peroxidases.


Assuntos
Colágeno/biossíntese , Regulação Enzimológica da Expressão Gênica , Osteoblastos/enzimologia , Peroxidases/metabolismo , Artroplastia de Quadril , Ácido Ascórbico/química , Osso e Ossos/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Peroxidase de Eosinófilo/metabolismo , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Heme/química , Humanos , Inflamação , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo
11.
Int J Biochem Cell Biol ; 68: 128-38, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26386352

RESUMO

Peroxidases are heme-containing enzymes released by activated immune cells at sites of inflammation. To-date their functional role in human health has mainly been limited to providing a mechanism for oxidative defence against invading bacteria and other pathogenic microorganisms. Our laboratory has recently identified a new functional role for peroxidase enzymes in stimulating fibroblast migration and collagen biosynthesis, offering a new insight into the causative association between inflammation and the pro-fibrogenic events that mediate tissue repair and regeneration. Peroxidases are found at elevated levels within and near blood vessels however, their direct involvement in angiogenesis has never been reported. Here we report for the first time that myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are readily internalised by human umbilical vein endothelial cells (HUVEC) where they promote cellular proliferation, migration, invasion, and stimulate angiogenesis both in vitro and in vivo. These pro-angiogenic effects were attenuated using the specific peroxidase inhibitor 4-ABAH, indicating the enzyme's catalytic activity is essential in mediating this response. Mechanistically, we provide evidence that MPO and EPO regulate endothelial FAK, Akt, p38 MAPK, ERK1/2 phosphorylation and stabilisation of HIF-2α, culminating in transcriptional regulation of key angiogenesis pathways. These findings uncover for the first time an important and previously unsuspected role for peroxidases as drivers of angiogenesis, and suggest that peroxidase inhibitors may have therapeutic potential for the treatment of angiogenesis related diseases driven by inflammation.


Assuntos
Compostos de Anilina/farmacologia , Inibidores Enzimáticos/farmacologia , Peroxidase de Eosinófilo/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Peroxidase/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bioensaio , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/química , Combinação de Medicamentos , Endocitose/efeitos dos fármacos , Peroxidase de Eosinófilo/antagonistas & inibidores , Peroxidase de Eosinófilo/genética , Peroxidase de Eosinófilo/metabolismo , Feminino , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Laminina/química , Camundongos , Camundongos Endogâmicos BALB C , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Peroxidase/antagonistas & inibidores , Peroxidase/genética , Peroxidase/metabolismo , Proteoglicanas/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Am J Pathol ; 185(5): 1372-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25759268

RESUMO

Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases.


Assuntos
Colágeno/biossíntese , Peroxidase de Eosinófilo/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Peroxidase/metabolismo , Animais , Western Blotting , Movimento Celular/fisiologia , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Humanos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Sus scrofa
13.
Cancer Lett ; 357(1): 160-169, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25444931

RESUMO

Tumor hypoxia is a major cause of treatment failure for a variety of malignancies. However, tumor hypoxia also offers treatment opportunities, exemplified by the development compounds that target hypoxic regions within tumors. TH-302 is a pro-drug created by the conjugation of 2-nitroimidazole to bromo-isophosphoramide (Br-IPM). When TH-302 is delivered to regions of hypoxia, Br-IPM, the DNA cross linking toxin, is released. In this study we assessed the cytotoxic activity of TH-302 against osteosarcoma cells in vitro and evaluated its anticancer efficacy as a single agent, and in combination with doxorubicin, in an orthotopic mouse model of human osteosarcoma (OS). In vitro, TH-302 was potently cytotoxic to osteosarcoma cells selectively under hypoxic conditions, whereas primary normal human osteoblasts were protected. Animals transplanted with OS cells directly into their tibiae and left untreated developed mixed osteolytic/osteosclerotic bone lesions and subsequently developed lung metastases. TH-302 reduced tumor burden in bone and cooperated with doxorubicin to protect bone from osteosarcoma induced bone destruction, while it also reduced lung metastases. TH-302 may therefore be an attractive therapeutic agent with strong activity as a single agent and in combination with chemotherapy against OS.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Nitroimidazóis/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Mostardas de Fosforamida/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/patologia , Hipóxia Celular/fisiologia , Feminino , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Nitroimidazóis/farmacocinética , Osteossarcoma/patologia , Mostardas de Fosforamida/farmacocinética , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia
14.
Anticancer Res ; 34(12): 7007-20, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25503127

RESUMO

BACKGROUND/AIM: Drozitumab is a fully human agonistic monoclonal antibody that binds to death receptor DR5 and induces apoptosis. However, drozitumab resistance is a major obstacle limiting anticancer efficacy. MATERIALS AND METHODS: We examined the potential for the chemotherapeutic agent doxorubicin to overcome resistance against drozitumab-resistant breast cancer cells both in vitro and in vivo. RESULTS: Treatment with doxorubicin increased cell surface expression of DR5, reduced levels of Inhibitors of Apoptosis Proteins (cIAPs) and re-sensitised cells to drozitumab-induced apoptosis. Animals implanted with resistant breast cancer cells into the mammary fat pad and treated with a combination of drozitumab and doxorubicin showed inhibition of tumor growth and a substantial delay in tumor progression compared to untreated controls and mice treated with each agent alone. CONCLUSION: These results suggest that combination of drozitumab with chemotherapy and agents that modulate IAP levels could potentially be a useful strategy in the treatment of breast cancer.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Animais , Anticorpos Monoclonais Humanizados , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Oncol ; 45(2): 532-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24865346

RESUMO

Osteoprotegerin (OPG) is a secreted member of the TNF receptor superfamily, which binds to the receptor activator of nuclear factor κB ligand (RANKL) and inhibits osteoclast activity and bone resorption. Systemic administration of recombinant OPG was previously shown to inhibit tumor growth in bone and to prevent cancer-induced osteolysis. In this study, we examined the effect of OPG, when produced locally by breast cancer cells located within bone, using a mouse model of osteolytic breast cancer. MDA-MB-231-TXSA breast cancer cells, tagged with a luciferase reporter gene construct and engineered to overexpress full-length human OPG, were transplanted directly into the tibial marrow cavity of nude mice. Overexpression of OPG by breast cancer cells protected the bone from breast cancer-induced osteolysis and diminished intra-osseous tumor growth but had no effect on extra-skeletal tumor growth. This effect was associated with a significant reduction in the number of osteoclasts that lined the bone surface, resulting in a net increase in bone volume. Despite limiting breast cancer-mediated bone loss, OPG overexpression resulted in a significant increase in the incidence of pulmonary metastasis. Our results demonstrate that inhibition of osteoclastic bone resorption by OPG when secreted locally by tumors in bone may affect the behaviour of cancer cells within the bone microenvironment and their likelihood of spreading and establishing metastasis elsewhere in the body.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Reabsorção Óssea/metabolismo , Neoplasias da Mama/patologia , Osteólise/prevenção & controle , Osteoprotegerina/metabolismo , Neoplasias de Tecidos Moles/secundário , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica/patologia , Osteólise/etiologia , Osteólise/metabolismo , Transfecção , Microtomografia por Raio-X
16.
J Sci Med Sport ; 13(1): 178-81, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18768358

RESUMO

There is evidence that protein hydrolysates can speed tissue repair following damage and may therefore be useful for accelerating recovery from exercise induced muscle damage. The potential for a hydrolysate (WPI(HD)) of whey protein isolate (WPI) to speed recovery following eccentric exercise was evaluated by assessing effects on recovery of peak isometric torque (PIT). In a double-blind randomised parallel trial, 28 sedentary males had muscle soreness (MS), serum creatine kinase (CK) activity, plasma TNFalpha, and PIT assessed at baseline and after 100 maximal eccentric contractions (ECC) of their knee extensors. Participants then consumed 250 ml of flavoured water (FW; n=11), or FW containing 25 g WPI (n=11) or 25 g WPI(HD) (n=6) and the assessments were repeated 1, 2, 6 and 24h later. PIT decreased approximately 23% following ECC, remained suppressed in FW and WPI, but recovered fully in WPI(HD) by 6h (P=0.006, treatment x time interaction). MS increased following ECC (P<0.001 for time), and remained elevated with no difference between groups (P=0.61). TNFalpha and CK did not change (P>0.45). WPI(HD) may be a useful supplement for assisting athletes to recover from fatiguing eccentric exercise.


Assuntos
Exercício Físico/fisiologia , Proteínas do Leite/administração & dosagem , Fadiga Muscular/efeitos dos fármacos , Fadiga Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Adolescente , Adulto , Análise de Variância , Creatina Quinase/sangue , Método Duplo-Cego , Teste de Esforço , Humanos , Contração Isométrica/efeitos dos fármacos , Contração Isométrica/fisiologia , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/fisiologia , Masculino , Dinamômetro de Força Muscular , Medição da Dor , Esforço Físico/fisiologia , Proteínas do Soro do Leite , Adulto Jovem
17.
J Nutr ; 139(11): 2145-51, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19759244

RESUMO

Controversy exists regarding the timing of the introduction of allergic foods into the diet. We investigated the immune response of rat pups exposed to beta-lactoglobulin (BLG), one of the main allergenic proteins in cow milk. Brown Norway allergy-prone rats were allocated into groups: dam-reared and unchallenged (DR), DR challenged with BLG via gavage (11 mg/d), or rats fed via gastric cannula a formula containing BLG (11 mg/d). BLG was given from d 4 of life. Rats were killed at d 10, 14, or 21. Sera were assayed for total IgE, BLG-specific IgG1, and rat mucosal mast cell protease II (RMCPII; indicator of mucosal mast cell degranulation). Ileum was assessed for cytokine mRNA. Mesenteric lymph nodes (MLN) were assessed for forkhead boxP3 (Foxp3) and chemokine (C-C motif) receptor 7 (CCR7) expression by real-time PCR and immunostained for Foxp3(+) CD4(+) regulatory cells. Formula feeding compared with dam-rearing with or without oral BLG challenge resulted in significantly greater serum IgE, BLG-specific IgG1, RMCPII, and intestinal mast cells but reduced MLN Foxp3(+) cells, Foxp3, and CCR7 expression and ileal cytokines, interleukin (IL)-4, IL-10, and interferon-gamma (P < 0.05). Importantly, giving BLG in the presence of maternal milk resulted in an immune response profile similar to that of unchallenged DR rats but with greater Foxp3 and CCR7 mRNA expression and CD4(+) Foxp3(+) cells (P < 0.05). We conclude that introducing an allergenic food with breast milk reduces immunological indicators of an allergic response, whereas introduction during formula feeding generates an allergic response.


Assuntos
Hipersensibilidade/imunologia , Fórmulas Infantis/administração & dosagem , Lactoglobulinas/imunologia , Hipersensibilidade a Leite/imunologia , Animais , Citocinas/genética , Feminino , Íleo/imunologia , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Mastócitos/imunologia , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos BN , Receptores CCR7/imunologia , Linfócitos T Reguladores/imunologia
18.
Kidney Int ; 64(2): 451-8, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12846740

RESUMO

BACKGROUND: It is currently impossible to reliably predict which diabetic patients will develop nephropathy and progress to kidney failure. Microalbuminuria, often regarded as a predictor of overt diabetic renal disease is, in fact, an indicator of established glomerular damage. We have shown that glomerular expression of the prosclerotic cytokine CCN2 (CTGF) is greatly up-regulated early in experimental and in human diabetes and mesangial cell exposure to CCN2 increases its production of extracellular matrix (ECM) molecules responsible for glomerulosclerosis. As an early marker, we therefore investigated the presence of CCN2 in urine and the relationship to diabetes and/or renal disease in an experimental model of diabetes and in a limited patient population. METHODS: Urine samples from (1) healthy rats, (2) rats made diabetic by streptozotocin (STZ), (3) healthy human volunteers, (4) diabetic patients with renal disease, and (5) diabetic patients without renal disease were examined by Western blotting and/or enzyme-linked immunosorbent assay (ELISA) for qualitative and quantitative analysis of the of CCN2. RESULTS: Low levels of urinary CCN2 were present in healthy, control rats, but were increased approximately sevenfold overall in STZ-diabetic animals. CCN2 levels were the highest at week 3 of diabetes, then decreased with time, but remained significantly elevated over controls even after 32 weeks. Consistently low levels of urinary CCN2 were also detected in healthy volunteers (mean value, 7.1 CCN2/mg creatinine). However, levels were elevated approximately sixfold in the majority of diabetic patients with nephropathy. A small number of the diabetic patients not yet exhibiting evidence of renal involvement demonstrated CCN2 urinary levels that were ninefold greater than controls. The remaining normoalbuminuric diabetic patients demonstrated CCN2 levels indistinguishable from those of healthy volunteers. Analysis by Western blotting confirmed the identity of the urinary CCN2. A molecular species equivalent to full-length CCN2 (37/39 kD doublet) was present in healthy controls. In contrast, the nephropathic group demonstrated multiple CCN2 bands. CONCLUSION: These findings support our hypothesis that CCN2 is up-regulated early in the evolution of glomerulosclerosis, including that of diabetes. We contend that urinary CCN2 may both stage nephropathy and predict those patients who are destined for progressive glomerulosclerosis and end-stage renal disease (ESRD). Cross-sectional and prospective studies of larger, well-defined diabetic patients groups will be required to prove this hypothesis, and are ongoing.


Assuntos
Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/urina , Proteínas Imediatamente Precoces/urina , Peptídeos e Proteínas de Sinalização Intercelular/urina , Animais , Biomarcadores , Fator de Crescimento do Tecido Conjuntivo , Diabetes Mellitus Experimental/urina , Humanos , Masculino , Projetos Piloto , Valor Preditivo dos Testes , Ratos , Ratos Endogâmicos F344
19.
J Am Soc Nephrol ; 11(1): 25-38, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10616837

RESUMO

Connective tissue growth factor (CTGF) is a peptide secreted by cultured endothelial cells and fibroblasts when stimulated by transforming growth factor-beta (TGF-beta), and is overexpressed during fibrotic processes in coronary arteries and in skin. To determine whether CTGF is implicated in the pathogenesis of diabetic glomerulosclerosis, cultured rat mesangial cells (MC) as well as kidney cortex and microdissected glomeruli were examined from obese, diabetic db/db mice and their normal counterparts. Exposure of MC to recombinant human CTGF significantly increased fibronectin and collagen type I production. Furthermore, unstimulated MC expressed low levels of CTGF message and secreted minimal amounts of CTGF protein (36 to 38 kD) into the media. However, sodium heparin treatment resulted in a greater than fourfold increase in media-associated CTGF, suggesting that the majority of CTGF produced was cell- or matrix-bound. Exposure of MC to TGF-beta, increased glucose concentrations, or cyclic mechanical strain, all causal factors in diabetic glomerulosclerosis, markedly induced the expression of CTGF transcripts, while recombinant human CTGF was able to autoinduce its own expression. TGF-, and high glucose, but not mechanical strain, stimulated the concomitant secretion of CTGF protein, the former also inducing abundant quantities of a small molecular weight form of CTGF (18 kD) containing the heparin-binding domain. The induction of CTGF protein by a high glucose concentration was mediated by TGF-beta, since a TGF-beta-neutralizing antibody blocked this stimulation. In vivo studies using quantitative reverse transcription-PCR demonstrated that although CTGF transcripts were low in the glomeruli of control mice, expression was increased 28-fold after approximately 3.5 mo of diabetes. This change occurred early in the course of diabetic nephropathy when mesangial expansion was mild, and interstitial disease and proteinuria were absent. A substantially reduced elevation of CTGF mRNA (twofold) observed in whole kidney cortices indicated that the primary alteration of CTGF expression was in the glomerulus. These results suggest that CTGF upregulation is an important factor in the pathogenesis of mesangial matrix accumulation and progressive glomerulosclerosis, acting downstream of TGF-beta.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Mesângio Glomerular/metabolismo , Substâncias de Crescimento/metabolismo , Proteínas Imediatamente Precoces , Peptídeos e Proteínas de Sinalização Intercelular , Animais , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Matriz Extracelular/genética , Fibronectinas/metabolismo , Expressão Gênica , Mesângio Glomerular/patologia , Glucose/metabolismo , Substâncias de Crescimento/genética , Rim/metabolismo , Masculino , Camundongos , Camundongos Obesos , RNA Mensageiro/análise , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Mecânico , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA