Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0298863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530829

RESUMO

Advancing human induced pluripotent stem cell derived cardiomyocyte (hiPSC-CM) technology will lead to significant progress ranging from disease modeling, to drug discovery, to regenerative tissue engineering. Yet, alongside these potential opportunities comes a critical challenge: attaining mature hiPSC-CM tissues. At present, there are multiple techniques to promote maturity of hiPSC-CMs including physical platforms and cell culture protocols. However, when it comes to making quantitative comparisons of functional behavior, there are limited options for reliably and reproducibly computing functional metrics that are suitable for direct cross-system comparison. In addition, the current standard functional metrics obtained from time-lapse images of cardiac microbundle contraction reported in the field (i.e., post forces, average tissue stress) do not take full advantage of the available information present in these data (i.e., full-field tissue displacements and strains). Thus, we present "MicroBundleCompute," a computational framework for automatic quantification of morphology-based mechanical metrics from movies of cardiac microbundles. Briefly, this computational framework offers tools for automatic tissue segmentation, tracking, and analysis of brightfield and phase contrast movies of beating cardiac microbundles. It is straightforward to implement, runs without user intervention, requires minimal input parameter setting selection, and is computationally inexpensive. In this paper, we describe the methods underlying this computational framework, show the results of our extensive validation studies, and demonstrate the utility of exploring heterogeneous tissue deformations and strains as functional metrics. With this manuscript, we disseminate "MicroBundleCompute" as an open-source computational tool with the aim of making automated quantitative analysis of beating cardiac microbundles more accessible to the community.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Técnicas de Cultura de Células , Diferenciação Celular
2.
Adv Sci (Weinh) ; 11(3): e2306210, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37997199

RESUMO

Intercellular communication is critical to the formation and homeostatic function of all tissues. Previous work has shown that cells can communicate mechanically via the transmission of cell-generated forces through their surrounding extracellular matrix, but this process is not well understood. Here, mechanically defined, synthetic electrospun fibrous matrices are utilized in conjunction with a microfabrication-based cell patterning approach to examine mechanical intercellular communication (MIC) between endothelial cells (ECs) during their assembly into interconnected multicellular networks. It is found that cell force-mediated matrix displacements in deformable fibrous matrices underly directional extension and migration of neighboring ECs toward each other prior to the formation of stable cell-cell connections enriched with vascular endothelial cadherin (VE-cadherin). A critical role is also identified for calcium signaling mediated by focal adhesion kinase and mechanosensitive ion channels in MIC that extends to multicellular assembly of 3D vessel-like networks when ECs are embedded within fibrin hydrogels. These results illustrate a role for cell-generated forces and ECM mechanical properties in multicellular assembly of capillary-like EC networks and motivates the design of biomaterials that promote MIC for vascular tissue engineering.


Assuntos
Comunicação Celular , Células Endoteliais , Matriz Extracelular , Engenharia Tecidual , Materiais Biocompatíveis
3.
iScience ; 26(12): 108472, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077130

RESUMO

Mechanical forces provide critical biological signals to cells during healthy and aberrant organ development as well as during disease processes in adults. Within the cardiopulmonary system, mechanical forces, such as shear, compressive, and tensile forces, act across various length scales, and dysregulated forces are often a leading cause of disease initiation and progression such as in bronchopulmonary dysplasia and cardiomyopathies. Engineered in vitro models have supported studies of mechanical forces in a number of tissue and disease-specific contexts, thus enabling new mechanistic insights into cardiopulmonary development and disease. This review first provides fundamental examples where mechanical forces operate at multiple length scales to ensure precise lung and heart function. Next, we survey recent engineering platforms and tools that have provided new means to probe and modulate mechanical forces across in vitro and in vivo settings. Finally, the potential for interdisciplinary collaborations to inform novel therapeutic approaches for a number of cardiopulmonary diseases are discussed.

4.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961415

RESUMO

The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, we established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM-mimetic synthetic, fiber matrices and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), enabling real-time contractility readouts, in-depth structural assessment, and tissue-specific computational modeling. We find that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC-CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell-ECM interactions in myofibril assembly and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC-CM tissue models with controllable architecture and mechanics can inform the design of translatable regenerative cardiac therapies.

5.
Acta Biomater ; 172: 123-134, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37879587

RESUMO

Engineered heart tissues (EHTs) present a potential solution to some of the current challenges in the treatment of heart disease; however, the development of mature, adult-like cardiac tissues remains elusive. Mechanical stimuli have been observed to improve whole-tissue function and cardiomyocyte (CM) maturation, although our ability to fully utilize these mechanisms is hampered, in part, by our incomplete understanding of the mechanobiology of EHTs. In this work, we leverage experimental data, produced by a mechanically tunable experimental setup, to introduce a tissue-specific computational modeling pipeline of EHTs. Our new modeling pipeline generates simulated, image-based EHTs, capturing ECM and myofibrillar structure as well as functional parameters estimated directly from experimental data. This approach enables the unique estimation of EHT function by data-based estimation of CM active stresses. We use this experimental and modeling pipeline to study different mechanical environments, where we contrast the force output of the tissue with the computed active stress of CMs. We show that the significant differences in measured experimental forces can largely be explained by the levels of myofibril formation achieved by the CMs in the distinct mechanical environments, with active stress showing more muted variations across conditions. The presented model also enables us to dissect the relative contributions of myofibrils and extracellular matrix to tissue force output, a task difficult to address experimentally. These results highlight the importance of tissue-specific modeling to augment EHT experiments, providing deeper insights into the mechanobiology driving EHT function. STATEMENT OF SIGNIFICANCE: Engineered heart tissues (EHTs) have the potential to revolutionize the way heart disease is treated. However, developing mature cardiomyocytes (CM) in these tissues remains a challenge due, in part, to our incomplete understanding of the fundamental biomechanical mechanisms that drive EHT development. This work integrates the experimental data of an EHT platform developed to study the influence of mechanics in CM maturation with computational biomechanical models. This approach is used to augment conclusions obtained in-vitro - by measuring quantities such as cell stress and strain - and to dissect the relevance of each component in the whole tissue performance. Our results show how a combination of specialized in-silico and in-vitro approaches can help us better understand the mechanobiology of EHTs.


Assuntos
Cardiopatias , Miócitos Cardíacos , Humanos , Matriz Extracelular , Engenharia Tecidual/métodos , Miocárdio
6.
Nat Commun ; 12(1): 6167, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697315

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) allow investigations in a human cardiac model system, but disorganized mechanics and immaturity of hPSC-CMs on standard two-dimensional surfaces have been hurdles. Here, we developed a platform of micron-scale cardiac muscle bundles to control biomechanics in arrays of thousands of purified, independently contracting cardiac muscle strips on two-dimensional elastomer substrates with far greater throughput than single cell methods. By defining geometry and workload in this reductionist platform, we show that myofibrillar alignment and auxotonic contractions at physiologic workload drive maturation of contractile function, calcium handling, and electrophysiology. Using transcriptomics, reporter hPSC-CMs, and quantitative immunofluorescence, these cardiac muscle bundles can be used to parse orthogonal cues in early development, including contractile force, calcium load, and metabolic signals. Additionally, the resultant organized biomechanics facilitates automated extraction of contractile kinetics from brightfield microscopy imaging, increasing the accessibility, reproducibility, and throughput of pharmacologic testing and cardiomyopathy disease modeling.


Assuntos
Coração/crescimento & desenvolvimento , Miocárdio , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Fenômenos Biomecânicos , Cálcio/metabolismo , Técnicas de Cultura de Células , Dimetilpolisiloxanos , Fenômenos Eletrofisiológicos , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Dispositivos Lab-On-A-Chip , Modelos Cardiovasculares , Contração Miocárdica , Miocárdio/citologia , Miocárdio/metabolismo , Miofibrilas/metabolismo , Reprodutibilidade dos Testes
7.
Front Bioeng Biotechnol ; 9: 679165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222216

RESUMO

Fibrous extracellular matrix (ECM) proteins provide mechanical structure and adhesive scaffolding to resident cells within stromal tissues. Aligned ECM fibers play an important role in directing morphogenetic processes, supporting mechanical loads, and facilitating cell migration. Various methods have been developed to align matrix fibers in purified biopolymer hydrogels, such as type I collagen, including flow-induced alignment, uniaxial tensile deformation, and magnetic particles. However, purified biopolymers have limited orthogonal tunability of biophysical cues including stiffness, fiber density, and fiber alignment. Here, we generate synthetic, cell-adhesive fiber segments of the same length-scale as stromal fibrous proteins through electrospinning. Superparamagnetic iron oxide nanoparticles (SPIONs) embedded in synthetic fiber segments enable magnetic field induced alignment of fibers within an amorphous bulk hydrogel. We find that SPION density and magnetic field strength jointly influence fiber alignment and identify conditions to control the degree of alignment. Tuning fiber length allowed the alignment of dense fibrous hydrogel composites without fiber entanglement or regional variation in the degree of alignment. Functionalization of fiber segments with cell adhesive peptides induced tendon fibroblasts to adopt a uniaxial morphology akin to within native tendon. Furthermore, we demonstrate the utility of this hydrogel composite to direct multicellular migration from MCF10A spheroids and find that fiber alignment prompts invading multicellular strands to separate into disconnected single cells and multicellular clusters. These magnetic fiber segments can be readily incorporated into other natural and synthetic hydrogels and aligned with inexpensive and easily accessible rare earth magnets, without the need for specialized equipment. 3D hydrogel composites where stiffness/crosslinking, fiber density, and fiber alignment can be orthogonally tuned may provide insights into morphogenetic and pathogenic processes that involve matrix fiber alignment and can enable systematic investigation of the individual contribution of each biophysical cue to cell behavior.

8.
Langmuir ; 37(5): 1874-1881, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33497243

RESUMO

Over the past 3 decades, there has been a vast expansion of research in both tissue engineering and organic electronics. Although the two fields have interacted little, the materials and fabrication technologies which have accompanied the rise of organic electronics offer the potential for innovation and translation if appropriately adapted to pattern biological materials for tissue engineering. In this work, we use two organic electronic materials as adhesion points on a biocompatible poly(p-xylylene) surface. The organic electronic materials are precisely deposited via vacuum thermal evaporation and organic vapor jet printing, the proven, scalable processes used in the manufacture of organic electronic devices. The small molecular-weight organics prevent the subsequent growth of antifouling polyethylene glycol methacrylate polymer brushes that grow within the interstices between the molecular patches, rendering these background areas both protein and cell resistant. Last, fibronectin attaches to the molecular patches, allowing for the selective adhesion of fibroblasts. The process is simple, reproducible, and promotes a high yield of cell attachment to the targeted sites, demonstrating that biocompatible organic small-molecule materials can pattern cells at the microscale, utilizing techniques widely used in electronic device fabrication.


Assuntos
Materiais Biocompatíveis , Eletrônica , Materiais Biocompatíveis/toxicidade , Engenharia Tecidual
9.
Biomater Sci ; 9(1): 93-107, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33325920

RESUMO

Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) show great potential for engineering myocardium to study cardiac disease and create regenerative therapies. However, iPSC-CMs typically possess a late embryonic stage phenotype, with cells failing to exhibit markers of mature adult tissue. This is due in part to insufficient knowledge and control of microenvironmental cues required to facilitate the organization and maturation of iPSC-CMs. Here, we employed a cell-adhesive, mechanically tunable synthetic fibrous extracellular matrix (ECM) consisting of electrospun dextran vinyl sulfone (DVS) fibers and examined how biochemical, architectural, and mechanical properties of the ECM impact iPSC-CM tissue assembly and subsequent function. Exploring a multidimensional parameter space spanning cell-adhesive ligand, seeding density, fiber alignment, and stiffness, we found that fibronectin-functionalized DVS matrices composed of highly aligned fibers with low stiffness optimally promoted the organization of functional iPSC-CM tissues. Tissues generated on these matrices demonstrated improved calcium handling and increased end-to-end localization of N-cadherin as compared to micropatterned fibronectin lines or fibronectin-coated glass. Furthermore, DVS matrices supported long-term culture (45 days) of iPSC-CMs; N-cadherin end-to-end localization and connexin43 expression both increased as a function of time in culture. In sum, these findings demonstrate the importance of recapitulating the fibrous myocardial ECM in engineering structurally organized and functional iPSC-CM tissues.


Assuntos
Células-Tronco Pluripotentes Induzidas , Adulto , Diferenciação Celular , Matriz Extracelular , Humanos , Miocárdio , Miócitos Cardíacos
10.
Acta Biomater ; 105: 78-86, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31945504

RESUMO

Mechanical interactions between fibroblasts and their surrounding extracellular matrix (ECM) guide fundamental behaviors such as spreading, migration, and proliferation that underlie disease pathogenesis. The challenges of studying ECM mechanics in vivo have motivated the development of in vitro models of the fibrous ECM in which fibroblasts reside. Natural materials such as collagen hydrogels bear structural and biochemical resemblance to stromal ECM, but mechanistic studies in these settings are often confounded by cell-mediated material degradation and the lack of structural and mechanical tunability. Here, we established a new material system composed of electrospun dextran vinyl sulfone (DexVS) polymeric fibers. These fibrous matrices exhibit mechanical tunability at both the single fiber (80-340 MPa) and bulk matrix (0.77-11.03 kPa) level, as well as long-term stability in mechanical properties over a two-week period. Cell adhesion to these matrices can be either user-defined by functionalizing synthetic fibers with thiolated adhesive peptides or methacrylated heparin to sequester cell-derived ECM proteins. We utilized DexVS fibrous matrices to investigate the role of matrix mechanics on the activation of fibroblasts into myofibroblasts, a key step of the fibrotic progression. In contrast to previous findings with non-fibrous hydrogel substrates, we find that fibroblasts in soft and deformable matrices exhibit increased spreading, focal adhesion formation, proliferation, and myofibroblast activation as compared to cells on stiffer matrices with equivalent starting architecture. STATEMENT OF SIGNIFICANCE: Cellular mechanosensing of fibrillar extracellular matrices plays a critical role in homeostasis and disease progression in stromal connective tissue. Here, we established a new material system composed of electrospun dextran vinyl sulfone polymeric fibers. These matrices exhibit architectural, mechanical, and biochemical tunability to accurately model diverse tissue microenvironments found in the body. In contrast to previous observations with non-fibrous hydrogels, we find that fibroblasts in soft and deformable fibrous matrices exhibit increased spreading and focal adhesion formation as compared to those in stiffer matrices with equivalent architecture. We also investigated the role of matrix stiffness on myofibroblast activation, a critical step in the fibrotic cascade, and find that low stiffness matrices promote increased myofibroblast activation.


Assuntos
Dextranos/farmacologia , Miofibroblastos/citologia , Sulfonas/farmacologia , Adesão Celular/efeitos dos fármacos , Módulo de Elasticidade/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Heparina/farmacologia , Humanos , Metacrilatos/farmacologia , Miofibroblastos/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA