Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Ecol Evol ; 24(1): 55, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664688

RESUMO

BACKGROUND: Sex differences in mitochondrial function have been reported in multiple tissue and cell types. Additionally, sex-variable responses to stressors including environmental pollutants and drugs that cause mitochondrial toxicity have been observed. The mechanisms that establish these differences are thought to include hormonal modulation, epigenetic regulation, double dosing of X-linked genes, and the maternal inheritance of mtDNA. Understanding the drivers of sex differences in mitochondrial function and being able to model them in vitro is important for identifying toxic compounds with sex-variable effects. Additionally, understanding how sex differences in mitochondrial function compare across species may permit insight into the drivers of these differences, which is important for basic biology research. This study explored whether Caenorhabditis elegans, a model organism commonly used to study stress biology and toxicology, exhibits sex differences in mitochondrial function and toxicant susceptibility. To assess sex differences in mitochondrial function, we utilized four male enriched populations (N2 wild-type male enriched, fog-2(q71), him-5(e1490), and him-8(e1498)). We performed whole worm respirometry and determined whole worm ATP levels and mtDNA copy number. To probe whether sex differences manifest only after stress and inform the growing use of C. elegans as a mitochondrial health and toxicologic model, we also assessed susceptibility to a classic mitochondrial toxicant, rotenone. RESULTS: We detected few to no large differences in mitochondrial function between C. elegans sexes. Though we saw no sex differences in vulnerability to rotenone, we did observe sex differences in the uptake of this lipophilic compound, which may be of interest to those utilizing C. elegans as a model organism for toxicologic studies. Additionally, we observed altered non-mitochondrial respiration in two him strains, which may be of interest to other researchers utilizing these strains. CONCLUSIONS: Basal mitochondrial parameters in male and hermaphrodite C. elegans are similar, at least at the whole-organism level, as is toxicity associated with a mitochondrial Complex I inhibitor, rotenone. Our data highlights the limitation of using C. elegans as a model to study sex-variable mitochondrial function and toxicological responses.


Assuntos
Caenorhabditis elegans , DNA Mitocondrial , Mitocôndrias , Caracteres Sexuais , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Feminino , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA