Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 14(1): 78, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781321

RESUMO

Plant cell wall-derived biomass serves as a renewable source of energy and materials with increasing importance. The cell walls are biomacromolecular assemblies defined by a fine arrangement of different classes of polysaccharides, proteoglycans, and aromatic polymers and are one of the most complex structures in Nature. One of the most challenging tasks of cell biology and biomass biotechnology research is to image the structure and organization of this complex matrix, as well as to visualize the compartmentalized, multiplayer biosynthetic machineries that build the elaborate cell wall architecture. Better knowledge of the plant cells, cell walls, and whole tissue is essential for bioengineering efforts and for designing efficient strategies of industrial deconstruction of the cell wall-derived biomass and its saccharification. Cell wall-directed molecular probes and analysis by light microscopy, which is capable of imaging with a high level of specificity, little sample processing, and often in real time, are important tools to understand cell wall assemblies. This review provides a comprehensive overview about the possibilities for fluorescence label-based imaging techniques and a variety of probing methods, discussing both well-established and emerging tools. Examples of applications of these tools are provided. We also list and discuss the advantages and limitations of the methods. Specifically, we elaborate on what are the most important considerations when applying a particular technique for plants, the potential for future development, and how the plant cell wall field might be inspired by advances in the biomedical and general cell biology fields.

2.
ACS Chem Neurosci ; 11(20): 3288-3300, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32926777

RESUMO

The dopamine transporter (DAT) is critical for spatiotemporal control of dopaminergic neurotransmission and is the target for therapeutic agents, including ADHD medications, and abused substances, such as cocaine. Here, we develop new fluorescently labeled ligands that bind DAT with high affinity and enable single-molecule detection of the transporter. The cocaine analogue MFZ2-12 (1) was conjugated to novel rhodamine-based Janelia Fluorophores (JF549 and JF646). High affinity binding of the resulting ligands to DAT was demonstrated by potent inhibition of [3H]dopamine uptake in DAT transfected CAD cells and by competition radioligand binding experiments on rat striatal membranes. Visualization of binding was substantiated by confocal or TIRF microscopy revealing selective binding of the analogues to DAT transfected CAD cells. Single particle tracking experiments were performed with JF549-conjugated DG3-80 (3) and JF646-conjugated DG4-91 (4) on DAT transfected CAD cells enabling quantification and categorization of the dynamic behavior of DAT into four distinct motion classes (immobile, confined, Brownian, and directed). Finally, we show that the ligands can be used in direct stochastic optical reconstruction microscopy (dSTORM) experiments permitting further analyses of DAT distribution on the nanoscale. In summary, these novel fluorescent ligands are promising new tools for studying DAT localization and regulation with single-molecule resolution.


Assuntos
Cocaína , Proteínas da Membrana Plasmática de Transporte de Dopamina , Animais , Dopamina , Inibidores da Captação de Dopamina , Ligantes , Ratos , Imagem Individual de Molécula
3.
PLoS One ; 12(6): e0179568, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28609478

RESUMO

Family B G protein-coupled receptors (GPCRs) play vital roles in hormone-regulated homeostasis. They are drug targets for metabolic diseases, including type 2 diabetes and osteoporosis. Despite their importance, the signaling mechanisms for family B GPCRs at the molecular level remain largely unexplored due to the challenges in purification of functional receptors in sufficient amount for biophysical characterization. Here, we purified the family B GPCR human glucagon-like peptide-1 (GLP-1) receptor (GLP1R), whose agonists, e.g. exendin-4, are used for the treatment of type 2 diabetes mellitus. The receptor was expressed in HEK293S GnTl- cells using our recently developed protocol. The protocol incorporates the receptor into the native-like lipid environment of reconstituted high density lipoprotein (rHDL) particles, also known as nanodiscs, immediately after the membrane solubilization step followed by chromatographic purification, minimizing detergent contact with the target receptor to reduce denaturation and prolonging stabilization of receptor in lipid bilayers without extra steps of reconstitution. This method yielded purified GLP1R in nanodiscs that could bind to GLP-1 and exendin-4 and activate Gs protein. This nanodisc purification method can potentially be a general strategy to routinely obtain purified family B GPCRs in the 10s of microgram amounts useful for spectroscopic analysis of receptor functions and activation mechanisms.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/isolamento & purificação , Bicamadas Lipídicas/química , Nanoestruturas/química , Receptores Acoplados a Proteínas G/isolamento & purificação , Diabetes Mellitus Tipo 2/tratamento farmacológico , Exenatida , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Células HEK293 , Humanos , Hipoglicemiantes/uso terapêutico , Bicamadas Lipídicas/metabolismo , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Ligação Proteica , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Reprodutibilidade dos Testes , Peçonhas/metabolismo , Peçonhas/uso terapêutico
4.
Nature ; 535(7610): 182-6, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27362234

RESUMO

G-protein-coupled receptors (GPCRs) remain the primary conduit by which cells detect environmental stimuli and communicate with each other. Upon activation by extracellular agonists, these seven-transmembrane-domain-containing receptors interact with heterotrimeric G proteins to regulate downstream second messenger and/or protein kinase cascades. Crystallographic evidence from a prototypic GPCR, the ß2-adrenergic receptor (ß2AR), in complex with its cognate G protein, Gs, has provided a model for how agonist binding promotes conformational changes that propagate through the GPCR and into the nucleotide-binding pocket of the G protein α-subunit to catalyse GDP release, the key step required for GTP binding and activation of G proteins. The structure also offers hints about how G-protein binding may, in turn, allosterically influence ligand binding. Here we provide functional evidence that G-protein coupling to the ß2AR stabilizes a 'closed' receptor conformation characterized by restricted access to and egress from the hormone-binding site. Surprisingly, the effects of G protein on the hormone-binding site can be observed in the absence of a bound agonist, where G-protein coupling driven by basal receptor activity impedes the association of agonists, partial agonists, antagonists and inverse agonists. The ability of bound ligands to dissociate from the receptor is also hindered, providing a structural explanation for the G-protein-mediated enhancement of agonist affinity, which has been observed for many GPCR­G-protein pairs. Our data also indicate that, in contrast to agonist binding alone, coupling of a G protein in the absence of an agonist stabilizes large structural changes in a GPCR. The effects of nucleotide-free G protein on ligand-binding kinetics are shared by other members of the superfamily of GPCRs, suggesting that a common mechanism may underlie G-protein-mediated enhancement of agonist affinity.


Assuntos
Sítio Alostérico , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/farmacologia , Guanina/metabolismo , Guanina/farmacologia , Humanos , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Receptores Adrenérgicos beta 2/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacologia
5.
Science ; 350(6261): 674-7, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542570

RESUMO

Cataracts reduce vision in 50% of individuals over 70 years of age and are a common form of blindness worldwide. Cataracts are caused when damage to the major lens crystallin proteins causes their misfolding and aggregation into insoluble amyloids. Using a thermal stability assay, we identified a class of molecules that bind α-crystallins (cryAA and cryAB) and reversed their aggregation in vitro. The most promising compound improved lens transparency in the R49C cryAA and R120G cryAB mouse models of hereditary cataract. It also partially restored protein solubility in the lenses of aged mice in vivo and in human lenses ex vivo. These findings suggest an approach to treating cataracts by stabilizing α-crystallins.


Assuntos
Catarata/tratamento farmacológico , Hidroxicolesteróis/farmacologia , Cadeia A de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/química , Amiloide/antagonistas & inibidores , Amiloide/química , Animais , Varredura Diferencial de Calorimetria , Catarata/genética , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Hidroxicolesteróis/química , Hidroxicolesteróis/uso terapêutico , Camundongos , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Cadeia A de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/genética
6.
J Biol Chem ; 288(24): 17167-78, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23629648

RESUMO

Although several recent studies have reported that GPCRs adopt multiple conformations, it remains unclear how subtle conformational changes are translated into divergent downstream responses. In this study, we report on a novel class of FRET-based sensors that can detect the ligand/mutagenic stabilization of GPCR conformations that promote interactions with G proteins in live cells. These sensors rely on the well characterized interaction between a GPCR and the C terminus of a Gα subunit. We use these sensors to elucidate the influence of the highly conserved (E/D)RY motif on GPCR conformation. Specifically, Glu/Asp but not Arg mutants of the (E/D)RY motif are known to enhance basal GPCR signaling. Hence, it is unclear whether ionic interactions formed by the (E/D)RY motif (ionic lock) are necessary to stabilize basal GPCR states. We find that mutagenesis of the ß2-AR (E/D)RY ionic lock enhances interaction with Gs. However, only Glu/Asp but not Arg mutants increase G protein activation. In contrast, mutagenesis of the opsin (E/D)RY ionic lock does not alter its interaction with transducin. Instead, opsin-specific ionic interactions centered on residue Lys-296 are both necessary and sufficient to promote interactions with transducin. Effective suppression of ß2-AR basal activity by inverse agonist ICI 118,551 requires ionic interactions formed by the (E/D)RY motif. In contrast, the inverse agonist metoprolol suppresses interactions with Gs and promotes Gi binding, with concomitant pertussis toxin-sensitive inhibition of adenylyl cyclase activity. Taken together, these studies validate the use of the new FRET sensors while revealing distinct structural mechanisms for ligand-dependent GPCR function.


Assuntos
Opsinas/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Motivos de Aminoácidos , Substituição de Aminoácidos , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HEK293 , Humanos , Metoprolol/farmacologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Opsinas/química , Opsinas/genética , Fragmentos de Peptídeos/metabolismo , Propanolaminas/farmacologia , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Análise de Célula Única
7.
ACS Chem Biol ; 8(3): 617-25, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23237450

RESUMO

GPCRs mediate intracellular signaling upon external stimuli, making them ideal drug targets. However, little is known about their activation mechanisms due to the difficulty in purification. Here, we introduce a method to purify GPCRs in nanodiscs, which incorporates GPCRs into lipid bilayers immediately after membrane solubilization, followed by single-step purification. Using this approach, we purified a family B GPCR, parathyroid hormone 1 receptor (PTH1R), which regulates calcium and phosphate homeostasis and is a drug target for osteoporosis. We demonstrated that the purified PTH1R in nanodiscs can bind to PTH(1-34) and activate G protein. We also observed that Ca(2+) is a weak agonist of PTH1R, and Ca(2+) in millimolar concentration can switch PTH(1-34) from an inverse agonist to an agonist. Hence, our results show that nanodiscs are a viable vehicle for GPCR purification, enabling studies of GPCRs under precise experimental conditions without interference from other cellular or membrane components.


Assuntos
Cálcio/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Nanoestruturas/química , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Transdução de Sinais , Sítios de Ligação , Cálcio/farmacologia , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Receptor Tipo 1 de Hormônio Paratireóideo/agonistas , Receptor Tipo 1 de Hormônio Paratireóideo/isolamento & purificação , Relação Estrutura-Atividade
8.
Proc Natl Acad Sci U S A ; 108(38): 16086-91, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21914848

RESUMO

The active-state complex between an agonist-bound receptor and a guanine nucleotide-free G protein represents the fundamental signaling assembly for the majority of hormone and neurotransmitter signaling. We applied single-particle electron microscopy (EM) analysis to examine the architecture of agonist-occupied ß(2)-adrenoceptor (ß(2)AR) in complex with the heterotrimeric G protein Gs (Gαsßγ). EM 2D averages and 3D reconstructions of the detergent-solubilized complex reveal an overall architecture that is in very good agreement with the crystal structure of the active-state ternary complex. Strikingly however, the α-helical domain of Gαs appears highly flexible in the absence of nucleotide. In contrast, the presence of the pyrophosphate mimic foscarnet (phosphonoformate), and also the presence of GDP, favor the stabilization of the α-helical domain on the Ras-like domain of Gαs. Molecular modeling of the α-helical domain in the 3D EM maps suggests that in its stabilized form it assumes a conformation reminiscent to the one observed in the crystal structure of Gαs-GTPγS. These data argue that the α-helical domain undergoes a nucleotide-dependent transition from a flexible to a conformationally stabilized state.


Assuntos
Cristalografia por Raios X , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Adrenérgicos beta 2/química , Animais , Cristalização , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Guanosina 5'-O-(3-Tiotrifosfato)/química , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/ultraestrutura
9.
Nature ; 477(7366): 611-5, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21956331

RESUMO

G protein-coupled receptors represent the largest family of membrane receptors that instigate signalling through nucleotide exchange on heterotrimeric G proteins. Nucleotide exchange, or more precisely, GDP dissociation from the G protein α-subunit, is the key step towards G protein activation and initiation of downstream signalling cascades. Despite a wealth of biochemical and biophysical studies on inactive and active conformations of several heterotrimeric G proteins, the molecular underpinnings of G protein activation remain elusive. To characterize this mechanism, we applied peptide amide hydrogen-deuterium exchange mass spectrometry to probe changes in the structure of the heterotrimeric bovine G protein, Gs (the stimulatory G protein for adenylyl cyclase) on formation of a complex with agonist-bound human ß(2) adrenergic receptor (ß(2)AR). Here we report structural links between the receptor-binding surface and the nucleotide-binding pocket of Gs that undergo higher levels of hydrogen-deuterium exchange than would be predicted from the crystal structure of the ß(2)AR-Gs complex. Together with X-ray crystallographic and electron microscopic data of the ß(2)AR-Gs complex (from refs 2, 3), we provide a rationale for a mechanism of nucleotide exchange, whereby the receptor perturbs the structure of the amino-terminal region of the α-subunit of Gs and consequently alters the 'P-loop' that binds the ß-phosphate in GDP. As with the Ras family of small-molecular-weight G proteins, P-loop stabilization and ß-phosphate coordination are key determinants of GDP (and GTP) binding affinity.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animais , Biocatálise , Domínio Catalítico , Bovinos , Cristalografia por Raios X , Medição da Troca de Deutério , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Adrenérgicos beta 2/ultraestrutura
10.
Nature ; 477(7366): 549-55, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21772288

RESUMO

G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The ß(2) adrenergic receptor (ß(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric ß(2)AR and nucleotide-free Gs heterotrimer. The principal interactions between the ß(2)AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the ß(2)AR include a 14 Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animais , Domínio Catalítico , Bovinos , Cristalização , Cristalografia por Raios X , Ativação Enzimática , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Ratos
11.
Nature ; 469(7329): 175-80, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21228869

RESUMO

G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human ß(2) adrenergic receptor (ß(2)AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive ß(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11 Å outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/imunologia , Nanoestruturas/química , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/imunologia , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animais , Sítios de Ligação , Camelídeos Americanos , Cristalografia por Raios X , Agonismo Inverso de Drogas , Humanos , Fragmentos de Imunoglobulinas/metabolismo , Fragmentos de Imunoglobulinas/farmacologia , Ligantes , Modelos Moleculares , Movimento/efeitos dos fármacos , Opsinas/agonistas , Opsinas/química , Opsinas/metabolismo , Propanolaminas/química , Propanolaminas/metabolismo , Propanolaminas/farmacologia , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/metabolismo
12.
Nature ; 469(7329): 236-40, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21228876

RESUMO

G-protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that modulate biological function by initiating cellular signalling in response to chemically diverse agonists. Despite recent progress in the structural biology of GPCRs, the molecular basis for agonist binding and allosteric modulation of these proteins is poorly understood. Structural knowledge of agonist-bound states is essential for deciphering the mechanism of receptor activation, and for structure-guided design and optimization of ligands. However, the crystallization of agonist-bound GPCRs has been hampered by modest affinities and rapid off-rates of available agonists. Using the inactive structure of the human ß(2) adrenergic receptor (ß(2)AR) as a guide, we designed a ß(2)AR agonist that can be covalently tethered to a specific site on the receptor through a disulphide bond. The covalent ß(2)AR-agonist complex forms efficiently, and is capable of activating a heterotrimeric G protein. We crystallized a covalent agonist-bound ß(2)AR-T4L fusion protein in lipid bilayers through the use of the lipidic mesophase method, and determined its structure at 3.5 Å resolution. A comparison to the inactive structure and an antibody-stabilized active structure (companion paper) shows how binding events at both the extracellular and intracellular surfaces are required to stabilize an active conformation of the receptor. The structures are in agreement with long-timescale (up to 30 µs) molecular dynamics simulations showing that an agonist-bound active conformation spontaneously relaxes to an inactive-like conformation in the absence of a G protein or stabilizing antibody.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Cristalização , Cristalografia por Raios X , Dissulfetos/química , Dissulfetos/metabolismo , Agonismo Inverso de Drogas , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Procaterol/química , Procaterol/metabolismo , Propanolaminas/química , Propanolaminas/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
13.
EMBO J ; 28(21): 3315-28, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19763081

RESUMO

The beta(2)-adrenoceptor (beta(2)AR) was one of the first Family A G protein-coupled receptors (GPCRs) shown to form oligomers in cellular membranes, yet we still know little about the number and arrangement of protomers in oligomers, the influence of ligands on the organization or stability of oligomers, or the requirement for other proteins to promote oligomerization. We used fluorescence resonance energy transfer (FRET) to characterize the oligomerization of purified beta(2)AR site-specifically labelled at three different positions with fluorophores and reconstituted into a model lipid bilayer. Our results suggest that the beta(2)AR is predominantly tetrameric following reconstitution into phospholipid vesicles. Agonists and antagonists have little effect on the relative orientation of protomers in oligomeric complexes. In contrast, binding of inverse agonists leads to significant increases in FRET efficiencies for most labelling pairs, suggesting that this class of ligand promotes tighter packing of protomers and/or the formation of more complex oligomers by reducing conformational fluctuations in individual protomers. The results provide new structural insights into beta(2)AR oligomerization and suggest a possible mechanism for the functional effects of inverse agonists.


Assuntos
Bicamadas Lipídicas/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Cisteína/genética , Transferência Ressonante de Energia de Fluorescência , Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Lipossomos/metabolismo , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Multimerização Proteica , Receptores Adrenérgicos beta 2/análise , Receptores Adrenérgicos beta 2/genética
14.
Proc Natl Acad Sci U S A ; 106(23): 9501-6, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19470481

RESUMO

G protein-coupled receptors (GPCRs) mediate the majority of physiologic responses to hormones and neurotransmitters. However, many GPCRs exhibit varying degrees of agonist-independent G protein activation. This phenomenon is referred to as basal or constitutive activity. For many of these GPCRs, drugs classified as inverse agonists can suppress basal activity. There is a growing body of evidence that basal activity is physiologically relevant, and the ability of a drug to inhibit basal activity may influence its therapeutic properties. However, the molecular mechanism for basal activation and inhibition of basal activity by inverse agonists is poorly understood and difficult to study, because the basally active state is short-lived and represents a minor fraction of receptor conformations. Here, we investigate basal activation of the G protein Gs by the beta(2) adrenergic receptor (beta(2)AR) by using purified receptor reconstituted into recombinant HDL particles with a stoichiometric excess of Gs. The beta(2)AR is site-specifically labeled with a small, environmentally sensitive fluorophore enabling direct monitoring of agonist- and Gs-induced conformational changes. In the absence of an agonist, the beta(2)AR and Gs can be trapped in a complex by enzymatic depletion of guanine nucleotides. Formation of the complex is enhanced by the agonist isoproterenol, and it rapidly dissociates on exposure to concentrations of GTP and GDP found in the cytoplasm. The inverse agonist ICI prevents formation of the beta(2)AR-Gs complex, but has little effect on preformed complexes. These results provide insights into G protein-induced conformational changes in the beta(2)AR and the structural basis for ligand efficacy.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Ligantes , Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2 , Compostos Bicíclicos com Pontes , Proteínas de Ligação ao GTP/química , Humanos , Estabilidade Proteica , Receptores Adrenérgicos beta 2/química , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA