Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 38(11): 110517, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294868

RESUMO

Individuals with autism spectrum disorder (ASD) exhibit an increased burden of de novo mutations (DNMs) in a broadening range of genes. While these studies have implicated hundreds of genes in ASD pathogenesis, which DNMs cause functional consequences in vivo remains unclear. We functionally test the effects of ASD missense DNMs using Drosophila through "humanization" rescue and overexpression-based strategies. We examine 79 ASD variants in 74 genes identified in the Simons Simplex Collection and find 38% of them to cause functional alterations. Moreover, we identify GLRA2 as the cause of a spectrum of neurodevelopmental phenotypes beyond ASD in 13 previously undiagnosed subjects. Functional characterization of variants in ASD candidate genes points to conserved neurobiological mechanisms and facilitates gene discovery for rare neurodevelopmental diseases.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Drosophila , Transtornos do Neurodesenvolvimento , Receptores de Glicina , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno Autístico/genética , Drosophila/genética , Predisposição Genética para Doença , Humanos , Transtornos do Neurodesenvolvimento/genética , Receptores de Glicina/genética
2.
PLoS Genet ; 17(12): e1009962, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34905536

RESUMO

TM2 domain containing (TM2D) proteins are conserved in metazoans and encoded by three separate genes in each model organism species that has been sequenced. Rare variants in TM2D3 are associated with Alzheimer's disease (AD) and its fly ortholog almondex is required for embryonic Notch signaling. However, the functions of this gene family remain elusive. We knocked-out all three TM2D genes (almondex, CG11103/amaretto, CG10795/biscotti) in Drosophila and found that they share the same maternal-effect neurogenic defect. Triple null animals are not phenotypically worse than single nulls, suggesting these genes function together. Overexpression of the most conserved region of the TM2D proteins acts as a potent inhibitor of Notch signaling at the γ-secretase cleavage step. Lastly, Almondex is detected in the brain and its loss causes shortened lifespan accompanied by progressive motor and electrophysiological defects. The functional links between all three TM2D genes are likely to be evolutionarily conserved, suggesting that this entire gene family may be involved in AD.


Assuntos
Proteínas de Drosophila , Proteínas de Membrana , Neurogênese , Receptores Notch , Animais , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Técnicas de Inativação de Genes , Proteínas de Membrana/genética , Mutação/genética , Neurogênese/genética , Neurônios/metabolismo , Receptores Notch/genética , Transdução de Sinais/genética
3.
J Vis Exp ; (150)2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31498321

RESUMO

Advances in sequencing technology have made whole-genome and whole-exome datasets more accessible for both clinical diagnosis and cutting-edge human genetics research. Although a number of in silico algorithms have been developed to predict the pathogenicity of variants identified in these datasets, functional studies are critical to determining how specific genomic variants affect protein function, especially for missense variants. In the Undiagnosed Diseases Network (UDN) and other rare disease research consortia, model organisms (MO) including Drosophila, C. elegans, zebrafish, and mice are actively used to assess the function of putative human disease-causing variants. This protocol describes a method for the functional assessment of rare human variants used in the Model Organisms Screening Center Drosophila Core of the UDN. The workflow begins with gathering human and MO information from multiple public databases, using the MARRVEL web resource to assess whether the variant is likely to contribute to a patient's condition as well as design effective experiments based on available knowledge and resources. Next, genetic tools (e.g., T2A-GAL4 and UAS-human cDNA lines) are generated to assess the functions of variants of interest in Drosophila. Upon development of these reagents, two-pronged functional assays based on rescue and overexpression experiments can be performed to assess variant function. In the rescue branch, the endogenous fly genes are "humanized" by replacing the orthologous Drosophila gene with reference or variant human transgenes. In the overexpression branch, the reference and variant human proteins are exogenously driven in a variety of tissues. In both cases, any scorable phenotype (e.g., lethality, eye morphology, electrophysiology) can be used as a read-out, irrespective of the disease of interest. Differences observed between reference and variant alleles suggest a variant-specific effect, and thus likely pathogenicity. This protocol allows rapid, in vivo assessments of putative human disease-causing variants of genes with known and unknown functions.


Assuntos
Drosophila melanogaster/fisiologia , Genes/genética , Genômica/métodos , Mutação , Fenótipo , Algoritmos , Alelos , Animais , Drosophila melanogaster/genética , Exoma , Testes Genéticos , Humanos
4.
Cell Stress ; 2(9): 219-224, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31223139

RESUMO

Lamins are type-V intermediate filament proteins that comprise the nuclear lamina. Although once considered static structural components that provide physical support to the inner nuclear envelope, recent studies are revealing additional functional and regulatory roles for Lamins in chromatin organization, gene regulation, DNA repair, cell division and signal transduction. In this issue of Cell Stress, Oyston et al. (2018) reports the function of Lamin in the maintenance of nervous system integrity and neural circuit function using Drosophila. A number of laminopathies in humans exhibit age-dependent neurological phenotypes, but understanding how defects in specific neural cell types or circuitries contribute to patient phenotypes is very challenging. Drosophila provides a simple yet sophisticated system to begin untangling the vulnerability of diverse neuronal cell types and circuits against cellular stressors induced by defects in nuclear lamina organization.

5.
Front Genet ; 9: 700, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30693015

RESUMO

Neurodegeneration is characterized by progressive loss of neurons. Genetic and environmental factors both contribute to demise of neurons, leading to diverse devastating cognitive and motor disorders, including Alzheimer's and Parkinson's diseases in humans. Over the past few decades, the fruit fly, Drosophila melanogaster, has become an integral tool to understand the molecular, cellular and genetic mechanisms underlying neurodegeneration. Extensive tools and sophisticated technologies allow Drosophila geneticists to identify and study evolutionarily conserved genes that are essential for neural maintenance. In this review, we will focus on a large-scale mosaic forward genetic screen on the fly X-chromosome that led to the identification of a number of essential genes that exhibit neurodegenerative phenotypes when mutated. Most genes identified from this screen are evolutionarily conserved and many have been linked to human diseases with neurological presentations. Systematic electrophysiological and ultrastructural characterization of mutant tissue in the context of the Drosophila visual system, followed by a series of experiments to understand the mechanism of neurodegeneration in each mutant led to the discovery of novel molecular pathways that are required for neuronal integrity. Defects in mitochondrial function, lipid and iron metabolism, protein trafficking and autophagy are recurrent themes, suggesting that insults that eventually lead to neurodegeneration may converge on a set of evolutionarily conserved cellular processes. Insights from these studies have contributed to our understanding of known neurodegenerative diseases such as Leigh syndrome and Friedreich's ataxia and have also led to the identification of new human diseases. By discovering new genes required for neural maintenance in flies and working with clinicians to identify patients with deleterious variants in the orthologous human genes, Drosophila biologists can play an active role in personalized medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA