Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Ageing Res Rev ; 96: 102271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492808

RESUMO

Alzheimer's disease (AD) is caused by the aging process and manifested by cognitive deficits and progressive memory loss. During aging, several conditions, including hypertension, diabetes, and cholesterol, have been identified as potential causes of AD by affecting Sonic hedgehog (Shh) signalling. In addition to being essential for cell differentiation and proliferation, Shh signalling is involved in tissue repair and the prevention of neurodegeneration. Neurogenesis is dependent on Shh signalling; inhibition of this pathway results in neurodegeneration. Several protein-protein interactions that are involved in Shh signalling are implicated in the pathophysiology of AD like overexpression of the protein nexin-1 inhibits the Shh pathway in AD. A protein called Growth Arrest Specific-1 works with another protein called cysteine dioxygenase (CDO) to boost Shh signalling. CDO is involved in the development of the central nervous system (CNS). Shh signalling strengthened the blood brain barrier and therefore prevent the entry of amyloid beta and other toxins to the brain from periphery. Further, several traditional remedies used for AD and dementia, including Epigallocatechin gallate, yokukansan, Lycium barbarum polysaccharides, salvianolic acid, and baicalin, are known to stimulate the Shh pathway. In this review, we elaborated that the Shh signalling exerts a substantial influence on the pathogenesis of AD. In this article, we have tried to explore the various possible connections between the Shh signalling and various known pathologies of AD.


Assuntos
Doença de Alzheimer , Proteínas Hedgehog , Humanos , Proteínas Hedgehog/metabolismo , Peptídeos beta-Amiloides , Transdução de Sinais , Diferenciação Celular
2.
Mol Biol Rep ; 51(1): 209, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270737

RESUMO

BACKGROUND: Metabolic disorder is characterized as chronic low-grade inflammation which elevates the systemic inflammatory markers. The proposed hypothesis behind this includes occurrence of hypoxia due to intake of high fat diet leading to oxidative stress and mitochondrial dysfunction. AIM: In the present work our aim was to elucidate the possible mechanism of action of hydroethanolic fraction of M. longifolia leaves against the metabolic disorder. METHOD AND RESULTS: In the present investigation, effect of Madhuca longifolia hydroethanolic fraction (MLHEF) on HFD induced obesity and diabetes through mitochondrial action and selective GLUT expression has been studied. In present work, it was observed that HFD (50% of diet) on chronic administration aggravates the metabolic problems by causing reduced imbalanced oxidative stress, ATP production, and altered selective GLUT protein expression. Long term HFD administration reduced (p < 0.001) the SOD, CAT level significantly along with elevated liver function marker AST and ALT. MLHEF administration diminishes this oxidative stress. HFD administration also causes decreased ATP/ADP ratio owing to suppressed mitochondrial function and elevating LDH level. This oxidative imbalance further leads to dysregulated GLUT expression in hepatocytes, skeletal muscles and white adipose tissue. HFD leads to significant (p < 0.001) upregulation in GLUT 1 and 3 expression while significant (p < 0.001) downregulation in GLUT 2 and 4 expressions in WAT, liver and skeletal muscles. Administration of MLHEF significantly (p < 0.001) reduced the LDH level and also reduces the mitochondrial dysfunction. CONCLUSION: Imbalances in GLUT levels were significantly reversed in order to maintain GLUT expression in tissues on the administration of MLHEF.


Assuntos
Diabetes Mellitus Experimental , Madhuca , Doenças Mitocondriais , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Experimental/tratamento farmacológico , Etanol , Inflamação , Trifosfato de Adenosina
3.
Front Pharmacol ; 13: 1009023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267270

RESUMO

This Study aimed to characterise the phenolic compounds in Garcinia pedunculata extract and assess their potential antioxidant activity as well as its cardioprotective potential in isoproterenol-induced cardiac hypertrophy in an experimental animal model. In vitro antioxidant properties were determined using DPPH, ABTS, FRAP, PMD assays. In vitro lipid peroxidation experiment was also performed with heart tissues. Cardioprotective and cardiotoxicity effects were determined using the cell line studies. The cardioprotective effect of GP was assessed in a rat model of isoproterenol-(ISO-) induced cardiac hypertrophy by subcutaneous administration. Heart weight/tail length ratio and cardiac hypertrophy indicators were reduced after oral administration of GP. Additionally, GP reduced oxidative stress and heart inflammation brought on by ISO. In H9c2 cells, the antihypertrophic and anti-inflammatory effects of the extract of GP were seen in the presence of ISO, which were further supported by the in vivo observations. This study makes a compelling case for the possibility that supplementing with dried GP fruit can prevent heart hypertrophy by reducing oxidative stress and inflammation.

4.
Antioxidants (Basel) ; 11(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883708

RESUMO

Cigarette smoking has been responsible for causing many life-threatening diseases such as pulmonary and cardiovascular diseases as well as lung cancer. One of the prominent health implications of cigarette smoking is the oxidative damage of cellular constituents, including proteins, lipids, and DNA. The oxidative damage is caused by reactive oxygen species (ROS, oxidants) present in the aqueous extract of cigarette smoke (CS). In recent years, there has been considerable interest in the potential health benefits of dietary polyphenols as natural antioxidant molecules. Epidemiological studies strongly suggest that long-term consumption of diets (fruits, vegetables, tea, and coffee) rich in polyphenols offer protective effects against the development of cancer, cardiovascular diseases, diabetes, osteoporosis, and neurodegenerative diseases. For instance, green tea has chemopreventive effects against CI-induced lung cancer. Tea might prevent CS-induced oxidative damages in diseases because tea polyphenols, such as catechin, EGCG, etc., have strong antioxidant properties. Moreover, apple polyphenols, including catechin and quercetin, provide protection against CS-induced acute lung injury such as chronic obstructive pulmonary disease (COPD). In CS-induced health problems, the antioxidant action is often accompanied by the anti-inflammatory effect of polyphenols. In this narrative review, the CS-induced oxidative damages and the associated health implications/pathological conditions (or diseases) and the role of diets rich in polyphenols and/or dietary polyphenolic compounds against various serious/chronic conditions of human health have been delineated.

5.
Front Pharmacol ; 13: 806470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237163

RESUMO

Dietary polyphenols including phenolic acids, flavonoids, catechins, tannins, lignans, stilbenes, and anthocyanidins are widely found in grains, cereals, pulses, vegetables, spices, fruits, chocolates, and beverages like fruit juices, tea, coffee and wine. In recent years, dietary polyphenols have gained significant interest among researchers due to their potential chemopreventive/protective functions in the maintenance of human health and diseases. It is believed that dietary polyphenols/flavonoids exert powerful antioxidant action for protection against reactive oxygen species (ROS)/cellular oxidative stress (OS) towards the prevention of OS-related pathological conditions or diseases. Pre-clinical and clinical evidence strongly suggest that long term consumption of diets rich in polyphenols offer protection against the development of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases (CVDs), cancer, diabetes, inflammatory disorders and infectious illness. Increased intake of foods containing polyphenols (for example, quercetin, epigallocatechin-3-gallate, resveratrol, cyanidin etc.) has been claimed to reduce the extent of a majority of chronic oxidative cellular damage, DNA damage, tissue inflammations, viral/bacterial infections, and neurodegenerative diseases. It has been suggested that the antioxidant activity of dietary polyphenols plays a pivotal role in the prevention of OS-induced human diseases. In this narrative review, the biological/pharmacological significance of dietary polyphenols in the prevention of and/or protection against OS-induced major human diseases such as cancers, neurodegenerative diseases, CVDs, diabetes mellitus, cancer, inflammatory disorders and infectious diseases have been delineated. This review specifically focuses a current understanding on the dietary sources of polyphenols and their protective effects including mechanisms of action against various major human diseases.

6.
Nat Prod Res ; 36(17): 4421-4425, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34541973

RESUMO

This study reports the influence of seasonality on the accumulation of verbascoside as a principal phenolic compound in Clerodendrum glandulosum Lindl. leaves along with possible alteration of antioxidant potentials. Leaves were collected during winter (December 2018), spring (February 2019), summer (May 2019), monsoon (July 2019), autumn (October 2019), and extracted with 95% aqueous methanol by cold maceration. The total phenolic content and antioxidant capacities (DPPH, ABTS and FRAP) were estimated by spectrophotometric technique, and verbascoside content was estimated by HPLC-PDA. Results indicate that the leaves collected during summer and winter both exhibited the highest total phenolic content verbascoside accumulation and antioxidant potentials which are significantly different (p < 0.05) than other seasons. Correlation studies further demonstrated that the total polyphenol and verbascoside contents were directly proportional to the antioxidant potentials. Thus, the study concludes that winter and summer are the best seasons for collecting leaves from this plant to obtain maximum antioxidant potential.


Assuntos
Antioxidantes , Clerodendrum , Antioxidantes/química , Glucosídeos , Extratos Vegetais/química , Folhas de Planta/química , Polifenóis , Estações do Ano
7.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209338

RESUMO

Flavonoids comprise a large group of structurally diverse polyphenolic compounds of plant origin and are abundantly found in human diet such as fruits, vegetables, grains, tea, dairy products, red wine, etc. Major classes of flavonoids include flavonols, flavones, flavanones, flavanols, anthocyanidins, isoflavones, and chalcones. Owing to their potential health benefits and medicinal significance, flavonoids are now considered as an indispensable component in a variety of medicinal, pharmaceutical, nutraceutical, and cosmetic preparations. Moreover, flavonoids play a significant role in preventing cardiovascular diseases (CVDs), which could be mainly due to their antioxidant, antiatherogenic, and antithrombotic effects. Epidemiological and in vitro/in vivo evidence of antioxidant effects supports the cardioprotective function of dietary flavonoids. Further, the inhibition of LDL oxidation and platelet aggregation following regular consumption of food containing flavonoids and moderate consumption of red wine might protect against atherosclerosis and thrombosis. One study suggests that daily intake of 100 mg of flavonoids through the diet may reduce the risk of developing morbidity and mortality due to coronary heart disease (CHD) by approximately 10%. This review summarizes dietary flavonoids with their sources and potential health implications in CVDs including various redox-active cardioprotective (molecular) mechanisms with antioxidant effects. Pharmacokinetic (oral bioavailability, drug metabolism), toxicological, and therapeutic aspects of dietary flavonoids are also addressed herein with future directions for the discovery and development of useful drug candidates/therapeutic molecules.


Assuntos
Antioxidantes , Cardiotônicos , Doenças Cardiovasculares , Flavonoides , Frutas/química , Verduras/química , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/uso terapêutico , Disponibilidade Biológica , Cardiotônicos/química , Cardiotônicos/farmacocinética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/prevenção & controle , Flavonoides/química , Flavonoides/farmacocinética , Flavonoides/uso terapêutico , Humanos
8.
Pharmacol Res ; 129: 227-236, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29175114

RESUMO

Murraya koenigii, a plant belonging to the Rutaceae family is widely distributed in Eastern-Asia and its medicinal properties are well documented in Ayurveda, the traditional Indian system of medicine. Through systematic research and pharmacological evaluation of different parts of the plant extracts has been shown to possess antiviral, anti-inflammatory, antioxidant, antidiabetic, antidiarrhoeal, antileishmanial, and antitumor activity. In the plant extracts, carbazole alkaloid, mahanine has been identified as the principle bioactive component among several other chemical constituents. Scientific evidence derived not only from in vitro cellular experiments but also from in vivo studies in various cancer models is accumulating for the pronounced anticancer effects of mahanine. The primary objective of this review is to summarize research data on cytotoxic chemical constituents present in different parts of Murraya koenigii and the anticancer activity of mahanine along with the recent understanding on the mechanism of its action in diverse cancer models. The information on its bioavailability and the toxicity generated from the recent studies have also been incorporated in the review.


Assuntos
Antineoplásicos , Carbazóis , Murraya , Compostos Fitoquímicos , Animais , Antineoplásicos/análise , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carbazóis/análise , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Humanos , Murraya/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
9.
Phytomedicine ; 33: 14-20, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28887915

RESUMO

BACKGROUND: Neanotis wightiana (Wall. ex Wight & Arn) W.H. Lewis has been used in traditional medicine in India for the treatment of liver disorders. In fact, this plant is frequently used by the local people of Tripura for the treatment of liver disorder problems. In previous study on this plant we have isolated a hepatoprotective saponin, neanoside A. PURPOSE: Evaluation of in vivo hepatoprotective effects of isolated compounds from N. wightiana aerial parts on serum hepatic-biomarkers in CCl4- induced hepatotoxicity in rats to validate the traditional use of the plant. STUDY DESIGN: This study was designed to isolate more hepatoprotective compounds from N. wightiana aerial parts and evaluate their in vivo hepatoprotective activity in animal model. METHODS: The phytochemicals from the polar n-butanol fraction of methanolic extract of N. wightiana aerial parts were isolated by repeated column chromatography over Diaion HP-20 and silica gel. Among the isolated three compounds, two were known triterpenoids, ursolic acid and oleanolic acid. The new compound was named neanoside B and its structure was established as naphthalene diglucoside 1 on the basis of extensive spectroscopic (including 2D NMR) analysis. Furthermore, the hepatoprotective activity of 1 was evaluated on CCl4 -induced hepatic injured rats by oral administration at three doses (5, 10 mg and 20 mg/kg) for 7 d and the assay of serum hepatic injury marker enzymes, SGPT, SGOT, ALP and bilirubin contents and histopathological changes of injured liver tissue after 7 d The herbal hepatoprotective drug, silymarin (100 mg/kg) was as positive control. RESULTS: The structure of the new compound, neanoside B (1) was elucidated as 1,4-dihydroxy-2-(methoxymethyl)naphthalen-3-yl-methyl-3-ß-d-glucopyranosyl-(1→6)-ß-d-glucopyranoside on the basis of extensive spectroscopic (including 2D-NMR) and chemical studies. The compound 1 exhibited significant in vivo hepatoprotective effect at the tested doses of 5, 10 and 20 mg/kg bw in CCl4-induced hepatotoxicity in rats. In a dose-dependent manner, 1 normalized the elevated levels of hepatic injury marker enzymes, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP) and total bilirubin and ameliorated the damage of liver tissue by reducing the necrosis and vacuoles. Possibly compound 1 ameliorated the hepatic damage in hepatotoxic rats by improving the antioxidant status. The higher dose (20 mg/kg) showed more hepatoprotective effect by reducing the elevated levels of SGPT, SGOT, ALP and bilirubin content to 388.5 ± 2.156, 160.7 ± 3.00, 198.6 ± 4.562 and 0.652 ± 0.036 IU/ml, respectively, compared to the levels in the control group (583.2 ± 6.922, 324.6 ± 4.711, 263.9 ± 4.939 and 1.533 ± 0.042 IU/ml, respectively) and the effect was comparable to that of the positive control silymarin (100 mg/kg bw) (389.4 ± 6.348, 167.9 ± 4.289, 203.3 ± 4.448 and 0.816 ± 0.030 IU/ml, respectively). CONCLUSIONS: This study indicated that isolated neanoside B (1) from Neanotis wightiana could be a potential drug in liver disorders. Further study in pharmacokinetics and long-term toxicity of compound 1 is requested for its clinical setting as effective drug in liver disorders.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Naftalenos/farmacologia , Extratos Vegetais/farmacologia , Rubiaceae/química , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Aspartato Aminotransferases/sangue , Bilirrubina/sangue , Dissacarídeos/isolamento & purificação , Dissacarídeos/farmacologia , Índia , Fígado/efeitos dos fármacos , Masculino , Medicina Tradicional , Naftalenos/isolamento & purificação , Naftóis/isolamento & purificação , Naftóis/farmacologia , Fitoterapia , Componentes Aéreos da Planta/química , Substâncias Protetoras/farmacologia , Ratos , Ratos Endogâmicos Lew , Silimarina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA