Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(37): e2305494120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669364

RESUMO

Cryoelectron microscopy (Cryo-EM) has enabled structural determination of proteins larger than about 50 kDa, including many intractable by any other method, but it has largely failed for smaller proteins. Here, we obtain structures of small proteins by binding them to a rigid molecular scaffold based on a designed protein cage, revealing atomic details at resolutions reaching 2.9 Å. We apply this system to the key cancer signaling protein KRAS (19 kDa in size), obtaining four structures of oncogenic mutational variants by cryo-EM. Importantly, a structure for the key G12C mutant bound to an inhibitor drug (AMG510) reveals significant conformational differences compared to prior data in the crystalline state. The findings highlight the promise of cryo-EM scaffolds for advancing the design of drug molecules against small therapeutic protein targets in cancer and other human diseases.


Assuntos
Diagnóstico por Imagem , Humanos , Microscopia Crioeletrônica
2.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 449-461, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259835

RESUMO

The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.


Assuntos
Proteínas , Software , Proteínas/química , Cristalografia por Raios X , Substâncias Macromoleculares
3.
SLAS Discov ; 26(1): 17-31, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33016175

RESUMO

Single-particle cryogenic electron microscopy (cryo-EM) has been elevated to the mainstream of structural biology propelled by technological advancements in numerous fronts, including imaging analysis and the development of direct electron detectors. The drug discovery field has watched with (initial) skepticism and wonder at the progression of the technique and how it revolutionized the molecular understanding of previously intractable targets. This article critically assesses how cryo-EM has impacted drug discovery in diverse therapeutic areas. Targets that have been brought into the realm of structure-based drug design by cryo-EM and are thus reviewed here include membrane proteins like the GABAA receptor, several TRP channels, and G protein-coupled receptors, and multiprotein complexes like the ribosomes, the proteasome, and eIF2B. We will describe these studies highlighting the achievements, challenges, and caveats.


Assuntos
Microscopia Crioeletrônica/métodos , Descoberta de Drogas/métodos , Animais , Humanos , Relação Estrutura-Atividade
4.
MAbs ; 10(1): 104-117, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28952876

RESUMO

C5a is a potent anaphylatoxin that modulates inflammation through the C5aR1 and C5aR2 receptors. The molecular interactions between C5a-C5aR1 receptor are well defined, whereas C5a-C5aR2 receptor interactions are poorly understood. Here, we describe the generation of a human antibody, MEDI7814, that neutralizes C5a and C5adesArg binding to the C5aR1 and C5aR2 receptors, without affecting complement-mediated bacterial cell killing. Unlike other anti-C5a mAbs described, this antibody has been shown to inhibit the effects of C5a by blocking C5a binding to both C5aR1 and C5aR2 receptors. The crystal structure of the antibody in complex with human C5a reveals a discontinuous epitope of 22 amino acids. This is the first time the epitope for an antibody that blocks C5aR1 and C5aR2 receptors has been described, and this work provides a basis for molecular studies aimed at further understanding the C5a-C5aR2 receptor interaction. MEDI7814 has therapeutic potential for the treatment of acute inflammatory conditions in which both C5a receptors may mediate inflammation, such as sepsis or renal ischemia-reperfusion injury.


Assuntos
Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos , Complemento C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptores de Quimiocinas/antagonistas & inibidores , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Complemento C5a/química , Complemento C5a/imunologia , Complemento C5a/metabolismo , Mapeamento de Epitopos/métodos , Epitopos , Células HEK293 , Humanos , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Receptor da Anafilatoxina C5a/química , Receptor da Anafilatoxina C5a/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Receptores de Quimiocinas/química , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Relação Estrutura-Atividade
5.
J Med Chem ; 60(8): 3438-3450, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28376306

RESUMO

There are a number of small-molecule inhibitors targeting the RAS/RAF/MEK/ERK signaling pathway that have either been approved or are in clinical development for oncology across a range of disease indications. The inhibition of ERK1/2 is of significant current interest, as cell lines with acquired resistance to BRAF and MEK inhibitors have been shown to maintain sensitivity to ERK1/2 inhibition in preclinical models. This article reports on our recent work to identify novel, potent, and selective reversible ERK1/2 inhibitors from a low-molecular-weight, modestly active, and highly promiscuous chemical start point, compound 4. To guide and inform the evolution of this series, inhibitor binding mode information from X-ray crystal structures was critical in the rapid exploration of this template to compound 35, which was active when tested in in vivo antitumor efficacy experiments.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Cães , Descoberta de Drogas , Humanos , Metilação , Inibidores de Proteínas Quinases/farmacocinética
7.
ACS Med Chem Lett ; 7(5): 514-9, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27190603

RESUMO

A novel series of covalent inhibitors of EGFR (epidermal growth factor receptor) kinase was discovered through a combination of subset screening and structure-based design. These compounds preferentially inhibit mutant forms of EGFR (activating mutant and T790M mutant) over wild-type EGFR in cellular assays measuring EGFR autophosphorylation and proliferation, suggesting an improved therapeutic index in non-small cell lung cancer patients would be achievable relative to established EGFR inhibitors. We describe our design approaches, resulting in the identification of the lead compound 5, and our efforts to develop an understanding of the structure-activity relationships within this series. In addition, strategies to overcome challenges around metabolic stability and aqueous solubility are discussed. Despite limitations in its physical properties, 5 is orally bioavailable in mice and demonstrates pronounced antitumor activity in in vivo models of mutant EGFR-driven cancers.

8.
J Med Chem ; 58(11): 4790-801, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25977981

RESUMO

The RAS/RAF/MEK/ERK signaling pathway has been targeted with a number of small molecule inhibitors in oncology clinical development across multiple disease indications. Importantly, cell lines with acquired resistance to B-RAF and MEK inhibitors have been shown to maintain sensitivity to ERK1/2 inhibition by small molecule inhibitors. There are a number of selective, noncovalent ERK1/2 inhibitors reported along with the promiscuous hypothemycin (and related analogues) that act via a covalent mechanism of action. This article reports the identification of multiple series of highly selective covalent ERK1/2 inhibitors informed by structure-based drug design (SBDD). As a starting point for these covalent inhibitors, reported ERK1/2 inhibitors and a chemical series identified via high-throughput screening were exploited. These approaches resulted in the identification of selective covalent tool compounds for potential in vitro and in vivo studies to assess the risks and or benefits of targeting this pathway through such a mechanism of action.


Assuntos
Desenho de Fármacos , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/química , Inibidores de Proteínas Quinases/farmacologia , Sequência de Aminoácidos , Células Cultivadas , Cristalografia por Raios X , Humanos , Immunoblotting , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
9.
J Med Chem ; 58(1): 278-93, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25255283

RESUMO

Two structurally distinct series of novel, MAPK-activated kinase-2 prevention of activation inhibitors have been discovered by high throughput screening. Preliminary structure-activity relationship (SAR) studies revealed substructural features that influence the selective inhibition of the activation by p38α of the downstream kinase MK2 in preference to an alternative substrate, MSK1. Enzyme kinetics, surface plasmon resonance (SPR), 2D protein NMR, and X-ray crystallography were used to determine the binding mode and the molecular mechanism of action. The compounds bind competitively to the ATP binding site of p38α but unexpectedly with higher affinity in the p38α-MK2 complex compared with p38α alone. This observation is hypothesized to be the origin of the substrate selectivity. The two lead series identified are suitable for further investigation for their potential to treat chronic inflammatory diseases with improved tolerability over previously studied p38α inhibitors.


Assuntos
MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Ligação Competitiva , Células Cultivadas , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ativação Enzimática/efeitos dos fármacos , Humanos , Cinética , MAP Quinase Quinase 2/metabolismo , Espectroscopia de Ressonância Magnética , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Ressonância de Plasmônio de Superfície
10.
Protein Sci ; 23(5): 627-38, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24677421

RESUMO

The EphB receptors have key roles in cell morphology, adhesion, migration and invasion, and their aberrant action has been linked with the development and progression of many different tumor types. Their conflicting expression patterns in cancer tissues, combined with their high sequence and structural identity, present interesting challenges to those seeking to develop selective therapeutic molecules targeting this large receptor family. Here, we present the first structure of the EphB1 tyrosine kinase domain determined by X-ray crystallography to 2.5Å. Our comparative crystalisation analysis of the human EphB family kinases has also yielded new crystal forms of the human EphB2 and EphB4 catalytic domains. Unable to crystallize the wild-type EphB3 kinase domain, we used rational engineering (based on our new structures of EphB1, EphB2, and EphB4) to identify a single point mutation which facilitated its crystallization and structure determination to 2.2 Å. This mutation also improved the soluble recombinant yield of this kinase within Escherichia coli, and increased both its intrinsic stability and catalytic turnover, without affecting its ligand-binding profile. The partial ordering of the activation loop in the EphB3 structure alludes to a potential cis-phosphorylation mechanism for the EphB kinases. With the kinase domain structures of all four catalytically competent human EphB receptors now determined, a picture begins to emerge of possible opportunities to produce EphB isozyme-selective kinase inhibitors for mechanistic studies and therapeutic applications.


Assuntos
Receptor EphB1/química , Receptor EphB2/química , Receptor EphB4/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutagênese , Conformação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Receptor EphB3/química , Receptor EphB3/genética
11.
J Med Chem ; 56(17): 7025-48, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23930994

RESUMO

A novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR. In addition, these compounds show significant activity against the activating mutations, which gefitinib and erlotinib target and inhibition of which gives rise to their observed clinical efficacy. A glutathione (GSH)-based assay was used to measure thiol reactivity toward the electrophilic functionality of the inhibitor series, enabling both the identification of a suitable reactivity window for their potency and the development of a reactivity quantitative structure-property relationship (QSPR) to support design.


Assuntos
Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Modelos Moleculares , Mutação , Relação Estrutura-Atividade
12.
Biosci Rep ; 33(3)2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23627399

RESUMO

The Eph (erythropoietin-producing hepatocellular carcinoma) B receptors are important in a variety of cellular processes through their roles in cell-to-cell contact and signalling; their up-regulation and down-regulation has been shown to have implications in a variety of cancers. A greater understanding of the similarities and differences within this small, highly conserved family of tyrosine kinases will be essential to the identification of effective therapeutic opportunities for disease intervention. In this study, we have developed a route to production of multi-milligram quantities of highly purified, homogeneous, recombinant protein for the kinase domain of these human receptors in Escherichia coli. Analyses of these isolated catalytic fragments have revealed stark contrasts in their amenability to recombinant expression and their physical properties: e.g., a >16°C variance in thermal stability, a 3-fold difference in catalytic activity and disparities in their inhibitor binding profiles. We find EphB3 to be an outlier in terms of both its intrinsic stability, and more importantly its ligand-binding properties. Our findings have led us to speculate about both their biological significance and potential routes for generating EphB isozyme-selective small-molecule inhibitors. Our comprehensive methodologies provide a template for similar in-depth studies of other kinase superfamily members.


Assuntos
Receptores da Família Eph/química , Receptores da Família Eph/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Receptores da Família Eph/antagonistas & inibidores , Receptores da Família Eph/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
13.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 4): 425-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22505262

RESUMO

Coot is a molecular-graphics application primarily aimed to assist in model building and validation of biological macromolecules. Recently, tools have been added to work with small molecules. The newly incorporated tools for the manipulation and validation of ligands include interaction with PRODRG, subgraph isomorphism-based tools, representation of ligand chemistry, ligand fitting and analysis, and are described here.


Assuntos
Cristalografia por Raios X/métodos , Ligantes , Modelos Moleculares , Software
14.
Methods Mol Biol ; 841: 143-59, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22222451

RESUMO

The use of 3D structures derived from X-ray crystal data in drug development has increased in recent years. Molecular graphics applications are important tools at the end of the data processing pipeline and provide means to build, refine and validate protein models and ligand structures. We describe the requirements on useful data, what such data provide and typical problems in dealing with protein-ligand complexes and how one might address them with an emphasis on the use of Coot.


Assuntos
Desenho de Fármacos , Imageamento Tridimensional/métodos , Modelos Moleculares , Preparações Farmacêuticas/química , Cristalografia por Raios X , Ligantes , Estrutura Molecular , Proteínas/química
15.
PLoS One ; 4(10): e7112, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19841674

RESUMO

BACKGROUND: The serine/threonine kinase PIM2 is highly expressed in human leukemia and lymphomas and has been shown to positively regulate survival and proliferation of tumor cells. Its diverse ATP site makes PIM2 a promising target for the development of anticancer agents. To date our knowledge of catalytic domain structures of the PIM kinase family is limited to PIM1 which has been extensively studied and which shares about 50% sequence identity with PIM2. PRINCIPAL FINDINGS: Here we determined the crystal structure of PIM2 in complex with an organoruthenium complex (inhibition in sub-nanomolar level). Due to its extraordinary shape complementarity this stable organometallic compound is a highly potent inhibitor of PIM kinases. SIGNIFICANCE: The structure of PIM2 revealed several differences to PIM1 which may be explored further to generate isoform selective inhibitors. It has also demonstrated how an organometallic inhibitor can be adapted to the binding site of protein kinases to generate highly potent inhibitors. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.


Assuntos
Inibidores Enzimáticos/química , Proteínas Proto-Oncogênicas c-pim-1/química , Rutênio/química , Sítios de Ligação , Química Farmacêutica/métodos , Cristalografia por Raios X/métodos , Desenho de Fármacos , Humanos , Estrutura Molecular , Conformação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Estaurosporina/química , Relação Estrutura-Atividade
16.
J Med Chem ; 52(23): 7901-5, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19736928
17.
Structure ; 17(3): 352-62, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19278650

RESUMO

Splicing requires reversible phosphorylation of serine/arginine-rich (SR) proteins, which direct splice site selection in eukaryotic mRNA. These phosphorylation events are dependent on SR protein (SRPK) and cdc2-like kinase (CLK) families. SRPK1 phosphorylation of splicing factors is restricted by a specific docking interaction whereas CLK activity is less constrained. To understand functional differences between splicing factor targeting kinases, we determined crystal structures of CLK1 and CLK3. Intriguingly, in CLKs the SRPK1 docking site is blocked by insertion of a previously unseen helix alphaH. In addition, substrate docking grooves present in related mitogen activating protein kinases (MAPKs) are inaccessible due to a CLK specific beta7/8-hairpin insert. Thus, the unconstrained substrate interaction together with the determined active-site mediated substrate specificity allows CLKs to complete the functionally important hyperphosphorylation of splicing factors like ASF/SF2. In addition, despite high sequence conservation, we identified inhibitors with surprising isoform specificity for CLK1 over CLK3.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Insercional , Proteínas Nucleares/química , Fosforilação , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/química , Splicing de RNA , Proteínas de Ligação a RNA/química , Fatores de Processamento de Serina-Arginina , Especificidade por Substrato
18.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 9): 985-92, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18703848

RESUMO

Crystals of the cytotoxic thionin proteins viscotoxins A1 and B2 extracted from mistletoe diffracted to high resolution (1.25 and 1.05 A, respectively) and are excellent candidates for testing crystallographic methods. Ab initio direct methods were only successful in solving the viscotoxin B2 structure, which with 861 unique non-H atoms is one of the largest unknown structures without an atom heavier than sulfur to be solved in this way, but sulfur-SAD phasing provided a convincing solution for viscotoxin A1. Both proteins form dimers in the crystal and viscotoxin B2 (net charge +4 per monomer), but not viscotoxin A1 (net charge +6), is coordinated by sulfate or phosphate anions. The viscotoxin A1 crystal has a higher solvent content than the viscotoxin B2 crystal (49% as opposed to 28%) with solvent channels along the crystallographic 4(3) axes.


Assuntos
Proteínas de Plantas/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Viscum/química
19.
EMBO J ; 27(13): 1907-18, 2008 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-18566585

RESUMO

The positive transcription elongation factor b (P-TEFb) (CDK9/cyclin T (CycT)) promotes mRNA transcriptional elongation through phosphorylation of elongation repressors and RNA polymerase II. To understand the regulation of a transcriptional CDK by its cognate cyclin, we have determined the structures of the CDK9/CycT1 and free cyclin T2. There are distinct differences between CDK9/CycT1 and the cell cycle CDK CDK2/CycA manifested by a relative rotation of 26 degrees of CycT1 with respect to the CDK, showing for the first time plasticity in CDK cyclin interactions. The CDK9/CycT1 interface is relatively sparse but retains some core CDK-cyclin interactions. The CycT1 C-terminal helix shows flexibility that may be important for the interaction of this region with HIV TAT and HEXIM. Flavopiridol, an anticancer drug in phase II clinical trials, binds to the ATP site of CDK9 inducing unanticipated structural changes that bury the inhibitor. CDK9 activity and recognition of regulatory proteins are governed by autophosphorylation. We show that CDK9/CycT1 autophosphorylates on Thr186 in the activation segment and three C-terminal phosphorylation sites. Autophosphorylation on all sites occurs in cis.


Assuntos
Quinase 9 Dependente de Ciclina/química , Quinase 9 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Flavonoides/metabolismo , Piperidinas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ciclina T , Ciclinas/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Alinhamento de Sequência
20.
Structure ; 16(1): 115-24, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18184589

RESUMO

The activation segment of protein kinases is structurally highly conserved and central to regulation of kinase activation. Here we report an atypical activation segment architecture in human MPSK1 comprising a beta sheet and a large alpha-helical insertion. Sequence comparisons suggested that similar activation segments exist in all members of the MPSK1 family and in MAST kinases. The consequence of this nonclassical activation segment on substrate recognition was studied using peptide library screens that revealed a preferred substrate sequence of X-X-P/V/I-phi-H/Y-T*-N/G-X-X-X (phi is an aliphatic residue). In addition, we identified the GTPase DRG1 as an MPSK1 interaction partner and specific substrate. The interaction domain in DRG1 was mapped to the N terminus, leading to recruitment and phosphorylation at Thr100 within the GTPase domain. The presented data reveal an atypical kinase structural motif and suggest a role of MPSK1 regulating DRG1, a GTPase involved in regulation of cellular growth.


Assuntos
Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Ativação Enzimática , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estaurosporina/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA