Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Lung Cancer ; 154: 1-4, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33556604

RESUMO

INTRODUCTION: Deep Learning has been proposed as promising tool to classify malignant nodules. Our aim was to retrospectively validate our Lung Cancer Prediction Convolutional Neural Network (LCP-CNN), which was trained on US screening data, on an independent dataset of indeterminate nodules in an European multicentre trial, to rule out benign nodules maintaining a high lung cancer sensitivity. METHODS: The LCP-CNN has been trained to generate a malignancy score for each nodule using CT data from the U.S. National Lung Screening Trial (NLST), and validated on CT scans containing 2106 nodules (205 lung cancers) detected in patients from from the Early Lung Cancer Diagnosis Using Artificial Intelligence and Big Data (LUCINDA) study, recruited from three tertiary referral centers in the UK, Germany and Netherlands. We pre-defined a benign nodule rule-out test, to identify benign nodules whilst maintaining a high sensitivity, by calculating thresholds on the malignancy score that achieve at least 99 % sensitivity on the NLST data. Overall performance per validation site was evaluated using Area-Under-the-ROC-Curve analysis (AUC). RESULTS: The overall AUC across the European centers was 94.5 % (95 %CI 92.6-96.1). With a high sensitivity of 99.0 %, malignancy could be ruled out in 22.1 % of the nodules, enabling 18.5 % of the patients to avoid follow-up scans. The two false-negative results both represented small typical carcinoids. CONCLUSION: The LCP-CNN, trained on participants with lung nodules from the US NLST dataset, showed excellent performance on identification of benign lung nodules in a multi-center external dataset, ruling out malignancy with high accuracy in about one fifth of the patients with 5-15 mm nodules.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Inteligência Artificial , Alemanha , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico , Países Baixos , Estudos Retrospectivos , Nódulo Pulmonar Solitário/diagnóstico por imagem
2.
Eur Radiol ; 31(6): 4023-4030, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33269413

RESUMO

OBJECTIVES: To evaluate the performance of a novel convolutional neural network (CNN) for the classification of typical perifissural nodules (PFN). METHODS: Chest CT data from two centers in the UK and The Netherlands (1668 unique nodules, 1260 individuals) were collected. Pulmonary nodules were classified into subtypes, including "typical PFNs" on-site, and were reviewed by a central clinician. The dataset was divided into a training/cross-validation set of 1557 nodules (1103 individuals) and a test set of 196 nodules (158 individuals). For the test set, three radiologically trained readers classified the nodules into three nodule categories: typical PFN, atypical PFN, and non-PFN. The consensus of the three readers was used as reference to evaluate the performance of the PFN-CNN. Typical PFNs were considered as positive results, and atypical PFNs and non-PFNs were grouped as negative results. PFN-CNN performance was evaluated using the ROC curve, confusion matrix, and Cohen's kappa. RESULTS: Internal validation yielded a mean AUC of 91.9% (95% CI 90.6-92.9) with 78.7% sensitivity and 90.4% specificity. For the test set, the reader consensus rated 45/196 (23%) of nodules as typical PFN. The classifier-reader agreement (k = 0.62-0.75) was similar to the inter-reader agreement (k = 0.64-0.79). Area under the ROC curve was 95.8% (95% CI 93.3-98.4), with a sensitivity of 95.6% (95% CI 84.9-99.5), and specificity of 88.1% (95% CI 81.8-92.8). CONCLUSION: The PFN-CNN showed excellent performance in classifying typical PFNs. Its agreement with radiologically trained readers is within the range of inter-reader agreement. Thus, the CNN-based system has potential in clinical and screening settings to rule out perifissural nodules and increase reader efficiency. KEY POINTS: • Agreement between the PFN-CNN and radiologically trained readers is within the range of inter-reader agreement. • The CNN model for the classification of typical PFNs achieved an AUC of 95.8% (95% CI 93.3-98.4) with 95.6% (95% CI 84.9-99.5) sensitivity and 88.1% (95% CI 81.8-92.8) specificity compared to the consensus of three readers.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Nódulo Pulmonar Solitário , Humanos , Países Baixos , Nódulo Pulmonar Solitário/diagnóstico por imagem
3.
BJR Open ; 2(1): 20190035, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178963

RESUMO

OBJECTIVES: Harmonisation is the process whereby standardised uptake values from different scanners can be made comparable. This PET/CT pilot study aimed to evaluate the effectiveness of harmonisation of a modern scanner with image reconstruction incorporating resolution recovery (RR) with another vendor older scanner operated in two-dimensional (2D) mode, and for both against a European standard (EARL). The vendor-proprietary software EQ•PET was used, which achieves harmonisation with a Gaussian smoothing. A substudy investigated effect of RR on harmonisation. METHODS: Phantom studies on each scanner were performed to optimise the smoothing parameters required to achieve successful harmonisation. 80 patients were retrospectively selected; half were imaged on each scanner. As proof of principle, a cohort of 10 patients was selected from the modern scanner subjects to study the effects of RR on harmonisation. RESULTS: Before harmonisation, the modern scanner without RR adhered to EARL specification. Using the phantom data, filters were derived for optimal harmonisation between scanners and with and without RR as applicable, to the EARL standard. The 80-patient cohort did not reveal any statistically significant differences. In the 10-patient cohort SUVmax for RR > no RR irrespective of harmonisation but differences lacked statistical significance (one-way ANOVA F(3.36) = 0.37, p = 0.78). Bland-Altman analysis showed that harmonisation reduced the SUVmax ratio between RR and no RR to 1.07 (95% CI 0.96-1.18) with no outliers. CONCLUSIONS: EQ•PET successfully enabled harmonisation between modern and older scanners and against the EARL standard. Harmonisation reduces SUVmax and dependence on the use of RR in the modern scanner. ADVANCES IN KNOWLEDGE: EQ•PET is feasible to harmonise different PET/CT scanners and reduces the effect of RR on SUVmax.

4.
Am J Respir Crit Care Med ; 202(2): 241-249, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326730

RESUMO

Rationale: The management of indeterminate pulmonary nodules (IPNs) remains challenging, resulting in invasive procedures and delays in diagnosis and treatment. Strategies to decrease the rate of unnecessary invasive procedures and optimize surveillance regimens are needed.Objectives: To develop and validate a deep learning method to improve the management of IPNs.Methods: A Lung Cancer Prediction Convolutional Neural Network model was trained using computed tomography images of IPNs from the National Lung Screening Trial, internally validated, and externally tested on cohorts from two academic institutions.Measurements and Main Results: The areas under the receiver operating characteristic curve in the external validation cohorts were 83.5% (95% confidence interval [CI], 75.4-90.7%) and 91.9% (95% CI, 88.7-94.7%), compared with 78.1% (95% CI, 68.7-86.4%) and 81.9 (95% CI, 76.1-87.1%), respectively, for a commonly used clinical risk model for incidental nodules. Using 5% and 65% malignancy thresholds defining low- and high-risk categories, the overall net reclassifications in the validation cohorts for cancers and benign nodules compared with the Mayo model were 0.34 (Vanderbilt) and 0.30 (Oxford) as a rule-in test, and 0.33 (Vanderbilt) and 0.58 (Oxford) as a rule-out test. Compared with traditional risk prediction models, the Lung Cancer Prediction Convolutional Neural Network was associated with improved accuracy in predicting the likelihood of disease at each threshold of management and in our external validation cohorts.Conclusions: This study demonstrates that this deep learning algorithm can correctly reclassify IPNs into low- or high-risk categories in more than a third of cancers and benign nodules when compared with conventional risk models, potentially reducing the number of unnecessary invasive procedures and delays in diagnosis.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/fisiopatologia , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Neoplasias Pulmonares/epidemiologia , Redes Neurais de Computação , Estados Unidos/epidemiologia
5.
Thorax ; 75(4): 306-312, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32139611

RESUMO

BACKGROUND: Estimation of the risk of malignancy in pulmonary nodules detected by CT is central in clinical management. The use of artificial intelligence (AI) offers an opportunity to improve risk prediction. Here we compare the performance of an AI algorithm, the lung cancer prediction convolutional neural network (LCP-CNN), with that of the Brock University model, recommended in UK guidelines. METHODS: A dataset of incidentally detected pulmonary nodules measuring 5-15 mm was collected retrospectively from three UK hospitals for use in a validation study. Ground truth diagnosis for each nodule was based on histology (required for any cancer), resolution, stability or (for pulmonary lymph nodes only) expert opinion. There were 1397 nodules in 1187 patients, of which 234 nodules in 229 (19.3%) patients were cancer. Model discrimination and performance statistics at predefined score thresholds were compared between the Brock model and the LCP-CNN. RESULTS: The area under the curve for LCP-CNN was 89.6% (95% CI 87.6 to 91.5), compared with 86.8% (95% CI 84.3 to 89.1) for the Brock model (p≤0.005). Using the LCP-CNN, we found that 24.5% of nodules scored below the lowest cancer nodule score, compared with 10.9% using the Brock score. Using the predefined thresholds, we found that the LCP-CNN gave one false negative (0.4% of cancers), whereas the Brock model gave six (2.5%), while specificity statistics were similar between the two models. CONCLUSION: The LCP-CNN score has better discrimination and allows a larger proportion of benign nodules to be identified without missing cancers than the Brock model. This has the potential to substantially reduce the proportion of surveillance CT scans required and thus save significant resources.


Assuntos
Inteligência Artificial , Transformação Celular Neoplásica/patologia , Neoplasias Pulmonares/patologia , Nódulos Pulmonares Múltiplos/patologia , Redes Neurais de Computação , Adulto , Idoso , Algoritmos , Área Sob a Curva , Estudos de Coortes , Bases de Dados Factuais , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Incidência , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/fisiopatologia , Masculino , Pessoa de Meia-Idade , Nódulos Pulmonares Múltiplos/epidemiologia , Nódulos Pulmonares Múltiplos/fisiopatologia , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Prognóstico , Curva ROC , Estudos Retrospectivos , Medição de Risco
6.
Phys Med Biol ; 64(17): 175002, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31344691

RESUMO

This study aims at assessing whether EANM harmonisation strategy combined with EQ·PET methodology could be successfully applied to harmonize brain 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) images. The NEMA NU 2 body phantom was prepared according to the EANM guidelines with an [18F]FDG solution. Raw PET phantom data were reconstructed with three different reconstruction protocols frequently used in clinical PET brain imaging: ([Formula: see text]) Ordered subset expectation maximization (OSEM) 3D with time of flight (TOF), 2 iterations and 21 subsets; ([Formula: see text]) OSEM 3D with TOF, 6 iterations and 21 subsets; and ([Formula: see text]) OSEM 3D with TOF, point spread function (PSF), and 8 iterations and 21 subsets. EQ·PET filters were computed as the Gaussian smoothing that best independently aligned the recovery coefficients (RCs) of reconstructions [Formula: see text] and [Formula: see text] with the RCs of the reference reconstruction, [Formula: see text]. The performance of the EQ·PET filter to reduce variations in quantification due to differences in reconstruction was investigated using clinical PET brain images of 35 early-onset Alzheimer's disease (EOAD) patients. Qualitative assessments and multiple quantitative metrics on the cortical surface at different scale levels with or without partial volume effect correction were evaluated on the [18F]FDG brain data before and after application of the EQ·PET filter. The EQ·PET methodology succeeded in finding the optimal smoothing that minimised root-mean-square error (RMSE) calculated using human brain [18F]FDG-PET datasets of EOAD patients, providing harmonized comparisons in the neurological context. Performance was superior for TOF than for TOF + PSF reconstructions. Results showed the capability of the EQ·PET methodology to minimize reconstruction-induced variabilities between brain [18F]FDG-PET images. However, moderate variabilities remained after harmonizing PSF reconstructions with standard non-PSF OSEM reconstructions, suggesting that precautions should be taken when using PSF modelling.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Fluordesoxiglucose F18 , Humanos , Processamento de Imagem Assistida por Computador/normas , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/normas , Compostos Radiofarmacêuticos
7.
IEEE Trans Med Imaging ; 38(5): 1216-1226, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30452353

RESUMO

The estimation of myocardial blood flow (MBF) in dynamic PET can be biased by many different processes. A major source of error, particularly in clinical applications, is patient motion. Patient motion, or gross motion, creates displacements between different PET frames as well as between the PET frames and the CT-derived attenuation map, leading to errors in MBF calculation from voxel time series. Motion correction techniques are challenging to evaluate quantitatively and the impact on MBF reliability is not fully understood. Most metrics, such as signal-to-noise ratio (SNR), are characteristic of static images, and are not specific to motion correction in dynamic data. This study presents a new approach of estimating motion correction quality in dynamic cardiac PET imaging. It relies on calculating a MBF surrogate, K1 , along with the uncertainty on the parameter. This technique exploits a Bayesian framework, representing the kinetic parameters as a probability distribution, from which the uncertainty measures can be extracted. If the uncertainty extracted is high, the parameter studied is considered to have high variability - or low confidence - and vice versa. The robustness of the framework is evaluated on simulated time activity curves to ensure that the uncertainties are consistently estimated at the multiple levels of noise. Our framework is applied on 40 patient datasets, divided in 4 motion magnitude categories. Experienced observers manually realigned clinical datasets with 3D translations to correct for motion. K1 uncertainties were compared before and after correction. A reduction of uncertainty after motion correction of up to 60% demonstrates the benefit of motion correction in dynamic PET and as well as provides evidence of the usefulness of the new method presented.


Assuntos
Circulação Coronária/fisiologia , Coração , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Idoso , Algoritmos , Teorema de Bayes , Feminino , Coração/diagnóstico por imagem , Coração/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Reprodutibilidade dos Testes
8.
J Nucl Med Technol ; 46(2): 114-122, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29273695

RESUMO

This study investigated differences in cardiac displacement during adenosine stress versus regadenoson stress in 13N-ammonia (13NH3) MP PET/CT scans. Methods: In total, 61 myocardial perfusion PET/CT scans were acquired using either adenosine (n = 30) or regadenoson (n = 31) as a stressor. For both groups, cardiac displacement during rest and stress was measured 3-dimensionally, relative to either a fixed reference frame or the previous frame, in each 1-min frame of a list-mode PET acquisition of 25 min. All stress scans were additionally evaluated for the presence of motion artifacts. Also, the tolerability of the agents and the occurrence of side effects were compared between groups. Results: Significantly larger cardiac displacement during stress was detected in the adenosine group than in the regadenoson group, reflected by both maximal cardiac displacement (P = 0.022) and mean cardiac displacement (P = 0.001). The duration of the movement was typically shorter in the regadenoson group. Frames with cardiac displacement of at least 5 mm were observed nearly twice as frequently when adenosine was used instead of regadenoson. Conclusion: The displacement during regadenoson stress is of lower amplitude and shorter duration than that during adenosine stress and may therefore contribute to a lower incidence of motion artifacts on PET/CT scans.


Assuntos
Adenosina/farmacologia , Amônia , Coração/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Purinas/farmacologia , Pirazóis/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Adenosina/efeitos adversos , Adulto , Artefatos , Feminino , Coração/efeitos dos fármacos , Coração/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Radioisótopos de Nitrogênio , Purinas/efeitos adversos , Pirazóis/efeitos adversos , Segurança
9.
Diagn Progn Res ; 2: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31093569

RESUMO

INTRODUCTION: Lung cancer is a common cancer, with over 1.3 million cases worldwide each year. Early diagnosis using computed tomography (CT) screening has been shown to reduce mortality but also detect non-malignant nodules that require follow-up scanning or alternative methods of investigation. Practical and accurate tools that can predict the probability that a lung nodule is benign or malignant will help reduce costs and the risk of morbidity and mortality associated with lung cancer. METHODS: Retrospectively collected data from 1500 patients with pulmonary nodule(s) of up to 15 mm detected on routinely performed CT chest scans aged 18 years old or older from three academic centres in the UK will be used to to develop risk stratification models. Radiological, clinical and patient characteristics will be combined in multivariable logistic regression models to predict nodule malignancy. Data from over 1000 participants recruited in a prospective phase of the study will be used to evaluate model performance. Discrimination, calibration and clinical utility measures will be presented.

10.
Neuroimage Clin ; 12: 990-1003, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27995065

RESUMO

Brain amyloid burden may be quantitatively assessed from positron emission tomography imaging using standardised uptake value ratios. Using these ratios as an adjunct to visual image assessment has been shown to improve inter-reader reliability, however, the amyloid positivity threshold is dependent on the tracer and specific image regions used to calculate the uptake ratio. To address this problem, we propose a machine learning approach to amyloid status classification, which is independent of tracer and does not require a specific set of regions of interest. Our method extracts feature vectors from amyloid images, which are based on histograms of oriented three-dimensional gradients. We optimised our method on 133 18F-florbetapir brain volumes, and applied it to a separate test set of 131 volumes. Using the same parameter settings, we then applied our method to 209 11C-PiB images and 128 18F-florbetaben images. We compared our method to classification results achieved using two other methods: standardised uptake value ratios and a machine learning method based on voxel intensities. Our method resulted in the largest mean distances between the subjects and the classification boundary, suggesting that it is less likely to make low-confidence classification decisions. Moreover, our method obtained the highest classification accuracy for all three tracers, and consistently achieved above 96% accuracy.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Máquina de Vetores de Suporte , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/classificação , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono , Etilenoglicóis , Feminino , Humanos , Masculino , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estilbenos
11.
Nucl Med Commun ; 37(5): 509-18, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26703759

RESUMO

OBJECTIVE: Dopamine transporter single-photon emission computed tomography (SPECT) with I-FP-CIT is used widely in the diagnosis of clinically uncertain parkinsonian syndromes. In terms of the evaluation of FP-CIT SPECT, some practice guidelines state that visual interpretation alone is generally sufficient in clinical patient care, whereas other guidelines consider semiquantitative analysis of striatal dopamine transporter availability mandatory. This discrepancy might be because of a relative lack of widely available display tools for FP-CIT SPECT. In this study, we evaluate a semiquantitative slab view display optimized for visual evaluation of FP-CIT SPECT that might resolve the discrepancy. PATIENTS AND METHODS: The reconstructed FP-CIT SPECT image was stereotactically normalized and scaled voxel by voxel to the mean uptake in the entire brain without striata. From the resulting distribution volume ratio image, a 12-mm-thick transversal slice (slab) through the striata was displayed with a standard colour table with predefined fixed thresholds on the distribution volume ratio. Visual scoring of the semiquantitative slab view was performed twice by four independent readers in 235 unselected patients. The specific binding ratio in the caudate and putamen was computed by fully automated semiquantitative analysis with predefined standard regions of interest in template space. RESULTS: Intrarater and inter-rater agreement of binary visual categorization as 'normal' or 'reduced' was excellent (mean Cohen's κ=0.88 and 0.83, respectively). The area under the receiver-operator characteristic curve of the specific putamen-binding ratio for differentiation between visually normal and visually reduced (majority read) was 0.96. CONCLUSION: Visual interpretation of FP-CIT SPECT on the basis of the semiquantitative slab view display provides excellent stability within and between readers as well as very high agreement with semiquantitative analysis. This suggests that the slab view display enables reliable visual interpretation of FP-CIT SPECT in clinical routine patient care.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Emissão de Fóton Único , Tropanos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Curva ROC
12.
Eur J Nucl Med Mol Imaging ; 42(5): 725-32, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25652817

RESUMO

PURPOSE: (18)F-Florbetapir positron emission tomography (PET) can be used to image amyloid burden in the human brain. A previously developed research method has been shown to have a high test-retest reliability and good correlation between standardized uptake value ratio (SUVR) and amyloid burden at autopsy. The goal of this study was to determine how well SUVRs computed using the research method could be reproduced using an automatic quantification method, developed for clinical use. METHODS: Two methods for the quantitative analysis of (18)F-florbetapir PET were compared in a diverse clinical population of 604 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and in a group of 74 younger healthy controls (YHC). Cortex to cerebellum SUVRs were calculated using the research method, which is based on SPM, yielding 'research SUVRs', and using syngo.PET Amyloid Plaque, yielding 'sPAP SUVRs'. RESULTS: Mean cortical SUVRs calculated using the two methods for the 678 subjects were correlated (r = 0.99). Linear regression of sPAP SUVRs on research SUVRs was used to convert the research method SUVR threshold for florbetapir positivity of 1.10 to a corresponding threshold of 1.12 for sPAP. Using the corresponding thresholds, categorization of SUVR values were in agreement between research and sPAP SUVRs for 96.3 % of the ADNI images. SUVRs for all YHC were below the corresponding thresholds. CONCLUSION: Automatic florbetapir PET quantification using sPAP yielded cortex to cerebellum SUVRs which were correlated and in good agreement with the well-established research method. The research SUVR threshold for florbetapir positivity was reliably converted to a corresponding threshold for sPAP SUVRs.


Assuntos
Algoritmos , Doença de Alzheimer/diagnóstico por imagem , Compostos de Anilina , Etilenoglicóis , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Adolescente , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Interpretação Estatística de Dados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
J Nucl Cardiol ; 22(1): 72-84, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25294436

RESUMO

OBJECTIVES: Recent technological improvements to PET imaging equipment combined with the availability of software optimized to calculate regional myocardial blood flow (MBF) and myocardial flow reserve (MFR) create a paradigm shifting opportunity to provide new clinically relevant quantitative information to cardiologists. However, clinical interpretation of the MBF and MFR is entirely dependent upon knowledge of MBF and MFR values in normal populations and subpopulations. This work reports Rb-82-based MBF and MFR measurements for a series of 49 verified cardiovascularly normal subjects as a preliminary baseline for future clinical studies. METHODS: Forty-nine subjects (24F/25M, ages 41-69) with low probability for coronary artery disease and with normal exercise stress test were included. These subjects underwent rest/dipyridamole stress Rb-82 myocardial perfusion imaging using standard clinical techniques (40 mCi injection, 6-minute acquisition) using a Siemens Biograph 40 PET/CT scanner with high count rate detector option. List mode data was rehistogrammed into 26 dynamic frames (12 × 5 seconds, 6 × 10 seconds, 4 × 20 seconds, 4 × 40 seconds). Cardiac images were processed, and MBF and MFR calculated using Siemens syngo MBF, PMOD, and FlowQuant software using a single compartment Rb-82 model. RESULTS: Global myocardial blood flow under pharmacological stress for the 24 females as measured by PMOD, syngo MBF, and FlowQuant were 3.10 ± 0.72, 2.80 ± 0.66, and 2.60 ± 0.63 mL·minute(-1)·g(-1), and for the 25 males was 2.60 ± 0.84, 2.33 ± 0.75, 2.15 ± 0.62 mL·minute(-1)·g(-1), respectively. Rest flows for PMOD, syngo MBF, and FlowQuant averaged 1.32 ± 0.42, 1.20 ± 0.33, and 1.06 ± 0.38 mL·minute(-1)·g(-1) for the female subjects, and 1.12 ± 0.29, 0.90 ± 0.26, and 0.85 ± 0.24 mL·minute(-1)·g(-1) for the males. Myocardial flow reserves for PMOD, syngo MBF, and FlowQuant for the female normals were calculated to be 2.50 ± 0.80, 2.53 ± 0.67, 2.71 ± 0.90, and 2.50 ± 1.19, 2.85 ± 1.19, 2.94 ± 1.31 mL·minute(-1)·g(-1) for males. CONCLUSION: Quantitative normal MBF and MFR values averaged for age and sex have been compiled for three commercial pharmacokinetic software packages. The current collection of data consisting of 49 subjects resulted in several statistically significant conclusions that support the need for a software specific, age, and sex-matched database to aid in interpretation of quantitative clinical myocardial perfusion studies.


Assuntos
Sistema Cardiovascular/diagnóstico por imagem , Radioisótopos de Rubídio , Adulto , Idoso , Doença da Artéria Coronariana/diagnóstico por imagem , Circulação Coronária , Teste de Esforço , Feminino , Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Imagem de Perfusão do Miocárdio , Tomografia por Emissão de Pósitrons , Reprodutibilidade dos Testes , Descanso , Software
14.
IEEE Trans Med Imaging ; 34(2): 599-607, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25343757

RESUMO

This paper presents an approach to predict the deformation of the lungs and surrounding organs during respiration. The framework incorporates a computational model of the respiratory system, which comprises an anatomical model extracted from computed tomography (CT) images at end-expiration (EE), and a biomechanical model of the respiratory physiology, including the material behavior and interactions between organs. A personalization step is performed to automatically estimate patient-specific thoracic pressure, which drives the biomechanical model. The zone-wise pressure values are obtained by using a trust-region optimizer, where the estimated motion is compared to CT images at end-inspiration (EI). A detailed convergence analysis in terms of mesh resolution, time stepping and number of pressure zones on the surface of the thoracic cavity is carried out. The method is then tested on five public datasets. Results show that the model is able to predict the respiratory motion with an average landmark error of 3.40 ±1.0 mm over the entire respiratory cycle. The estimated 3-D lung motion may constitute as an advanced 3-D surrogate for more accurate medical image reconstruction and patient respiratory analysis.


Assuntos
Fenômenos Biomecânicos/fisiologia , Tomografia Computadorizada Quadridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Pulmão , Respiração , Simulação por Computador , Humanos , Pulmão/anatomia & histologia , Pulmão/fisiologia , Modelos Biológicos , Movimento , Medicina de Precisão/métodos
15.
JACC Cardiovasc Imaging ; 7(11): 1119-1127, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25306543

RESUMO

OBJECTIVES: The purpose of this study was to compare myocardial blood flow (MBF) and myocardial flow reserve (MFR) estimates from rubidium-82 positron emission tomography ((82)Rb PET) data using 10 software packages (SPs) based on 8 tracer kinetic models. BACKGROUND: It is unknown how MBF and MFR values from existing SPs agree for (82)Rb PET. METHODS: Rest and stress (82)Rb PET scans of 48 patients with suspected or known coronary artery disease were analyzed in 10 centers. Each center used 1 of 10 SPs to analyze global and regional MBF using the different kinetic models implemented. Values were considered to agree if they simultaneously had an intraclass correlation coefficient >0.75 and a difference <20% of the median across all programs. RESULTS: The most common model evaluated was the Ottawa Heart Institute 1-tissue compartment model (OHI-1-TCM). MBF values from 7 of 8 SPs implementing this model agreed best. Values from 2 other models (alternative 1-TCM and Axially distributed) also agreed well, with occasional differences. The MBF results from other models (e.g., 2-TCM and retention) were less in agreement with values from OHI-1-TCM. CONCLUSIONS: SPs using the most common kinetic model-OHI-1-TCM-provided consistent results in measuring global and regional MBF values, suggesting that they may be used interchangeably to process data acquired with a common imaging protocol.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , Compostos Radiofarmacêuticos , Radioisótopos de Rubídio , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença da Artéria Coronariana/fisiopatologia , Europa (Continente) , Feminino , Hemodinâmica , Humanos , Interpretação de Imagem Assistida por Computador , Japão , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Variações Dependentes do Observador , Ontário , Tomografia por Emissão de Pósitrons , Valor Preditivo dos Testes , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Radioisótopos de Rubídio/farmacocinética , Software , Estados Unidos
16.
EJNMMI Res ; 4: 69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25593791

RESUMO

BACKGROUND: Defining tumour volume for treatment response and radiotherapy planning is challenging and prone to inter- and intra-observer variability. Various automated tumour delineation methods have been proposed in the literature, each having abilities and limitations. Therefore, there is a need to provide clinicians with practical information on delineation method selection. METHODS: Six different automated positron emission tomography (PET) delineation methods were evaluated and compared using National Electrical Manufacturer Association image quality (NEMA IQ) phantom data and three in-house synthetic phantoms with clinically relevant lesion shapes including spheres with necrotic core and irregular shapes. The impact of different contrast ratios, emission counts, realisations and reconstruction algorithms on delineation performance was also studied using similarity index (SI) and percentage volume error (%VE) as performance measures. RESULTS: With the NEMA IQ phantom, contrast thresholding (CT) performed best on average for all sphere sizes and parameter settings (SI = 0.83; %VE = 5.65% ± 24.34%). Adaptive thresholding at 40% (AT40) was the next best method and required no prior parameter tuning (SI = 0.78; %VE = 23.22% ± 70.83%). When using SUV harmonisation filtering prior to delineation (EQ.PET), AT40 remains the best method without prior parameter tuning (SI = 0.81; %VE = 11.39% ± 85.28%). For necrotic core spheres and irregular shapes of the synthetic phantoms, CT remained the best performing method (SI = 0.83; %VE = 26.31% ± 38.26% and SI = 0.62; %VE = 24.52% ± 46.89%, respectively). The second best method was fuzzy locally adaptive Bayesian (FLAB) (SI = 0.83; %VE = 29.51% ± 81.79%) for necrotic core sphere and AT40 (SI = 0.58; %VE = 25.11% ± 32.41%) for irregular shapes. When using EQ.PET prior to delineation, AT40 was the best performing method without prior parameter tuning for both necrotic core (SI = 0.83; %VE = 27.98% ± 59.58%) and complex shapes phantoms (SI = 0.61; %VE = 14.83% ± 49.39%). CONCLUSIONS: CT and AT40/AT50 are recommended for all lesion sizes and contrasts. Overall, considering background uptake information improves PET delineation accuracy. Applying EQ.PET prior to delineation improves accuracy and reduces coefficient of variation (CV) across different reconstructions and acquisitions.

17.
Int J Cardiovasc Imaging ; 29(6): 1351-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23504215

RESUMO

The use of coronary calcium scoring (CaScCT) for attenuation correction (AC) of (13)N-ammonia PET/CT studies (NH3) is still being debated. We compare standard ACCT to CaScCT using various respiratory phases and co-registration methods for AC. Forty-one patients underwent a stress/rest NH3. Standard ACCT scans and CaScCT acquired during inspiration (CaScCTinsp, 26 patients) or expiration (CaScCTexp, 15 patients) were used to correct PET data for photon attenuation. Resulting images were compared using Pearson's correlation and Bland-Altman (BA) limits of agreement (LA) on segmental relative and absolute coronary blood flow (CBF) using both manual and automatic co-registration methods (rigid-body and deformable). For relative perfusion, CaScCTexp correlates better than CaScCTinsp with ACCT when using manual co-registration (r = 0.870; P < 0.001 and r = 0.732; P < 0.001, respectively). Automatic co-registration provides the best correlation between CaScCTexp and ACCT for relative perfusion (r = 0.956; P < 0.001). Both CaScCTinsp and CaScCTexp yielded excellent correlations with ACCT for CBF when using manual co-registration (r = 0.918; P < 0.001; BA mean bias 0.05 ml/min/g; LA: -0.42 to +0.3 ml/min/g and r = 0.97; P < 0.001; BA mean bias 0.1 ml/min/g; LA: -0.65 to +0.5 ml/min/g, respectively). The use of CaScCTexp and deformable co-registration is best suited for AC to quantify relative perfusion and CBF enabling substantial radiation dose reduction.


Assuntos
Amônia , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico , Imagem de Perfusão do Miocárdio/métodos , Radioisótopos de Nitrogênio , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Mecânica Respiratória , Tomografia Computadorizada por Raios X , Calcificação Vascular/diagnóstico , Adulto , Idoso , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Circulação Coronária , Expiração , Feminino , Humanos , Inalação , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/fisiopatologia
18.
J Nucl Med ; 54(4): 571-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23447656

RESUMO

UNLABELLED: Routine quantification of myocardial blood flow (MBF) requires robust and reproducible processing of dynamic image series. The goal of this study was to evaluate the reproducibility of 3 highly automated software programs commonly used for absolute MBF and flow reserve (stress/rest MBF) assessment with (82)Rb PET imaging. METHODS: Dynamic rest and stress (82)Rb PET scans were selected in 30 sequential patient studies performed at 3 separate institutions using 3 different 3-dimensional PET/CT scanners. All 90 scans were processed with 3 different MBF quantification programs, using the same 1-tissue-compartment model. Global (left ventricle) and regional (left anterior descending, left circumflex, and right coronary arteries) MBF and flow reserve were compared among programs using correlation and Bland-Altman analyses. RESULTS: All scans were processed successfully by the 3 programs, with minimal operator interactions. Global and regional correlations of MBF and flow reserve all had an R(2) of at least 0.92. There was no significant difference in flow values at rest (P = 0.68), stress (P = 0.14), or reserve (P = 0.35) among the 3 programs. Bland-Altman coefficients of reproducibility (1.96 × SD) averaged 0.26 for MBF and 0.29 for flow reserve differences among programs. Average pairwise differences were all less than 10%, indicating good reproducibility for MBF quantification. Global and regional SD from the line of perfect agreement averaged 0.15 and 0.17 mL/min/g, respectively, for MBF, compared with 0.22 and 0.26, respectively, for flow reserve. CONCLUSION: The 1-tissue-compartment model of (82)Rb tracer kinetics is a reproducible method for quantification of MBF and flow reserve with 3-dimensional PET/CT imaging.


Assuntos
Hemodinâmica , Imageamento Tridimensional/métodos , Modelos Biológicos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons , Radioisótopos de Rubídio/metabolismo , Software , Estresse Fisiológico , Tomografia Computadorizada por Raios X , Idoso , Feminino , Humanos , Cinética , Masculino , Reprodutibilidade dos Testes , Descanso
19.
Bioorg Med Chem ; 20(1): 324-9, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22130421

RESUMO

Radiopharmaceuticals for nuclear imaging are essentially targeting molecules, labeled with short-lived radionuclides (e.g., F-18 for PET). A significant drawback of radiopharmaceuticals development is the difficulty to access radiolabeled molecule libraries for initial in vitro evaluation, as radiolabeling has to be optimized for each individual molecule. The present paper discloses a method for preparing libraries of (18)F-labeled radiopharmaceuticals using both the fluorous-based (18)F-radiochemistry and the Huisgen 1,3-dipolar (click) conjugation reaction. As a proof of concept, this approach allowed us to obtain a series of readily accessible (18)F-radiolabeled nitroaromatic molecules, for exploring their structure-activity relationship and further in vitro evaluation of their hypoxic selectivity.


Assuntos
Biomarcadores/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Azidas/síntese química , Azidas/química , Azidas/farmacocinética , Hipóxia Celular , Linhagem Celular Tumoral , Química Click , Radioisótopos de Flúor/química , Humanos , Marcação por Isótopo , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Relação Estrutura-Atividade
20.
Med Image Comput Comput Assist Interv ; 14(Pt 3): 338-45, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22003717

RESUMO

We present a novel generic segmentation system for the fully automatic multi-organ segmentation from CT medical images. Thereby we combine the advantages of learning-based approaches on point cloud-based shape representation, such a speed, robustness, point correspondences, with those of PDE-optimization-based level set approaches, such as high accuracy and the straightforward prevention of segment overlaps. In a benchmark on 10-100 annotated datasets for the liver, the lungs, and the kidneys we show that the proposed system yields segmentation accuracies of 1.17-2.89 mm average surface errors. Thereby the level set segmentation (which is initialized by the learning-based segmentations) contributes with an 20%-40% increase in accuracy.


Assuntos
Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Inteligência Artificial , Bases de Dados Factuais , Humanos , Rim/patologia , Aprendizagem , Fígado/patologia , Pulmão/patologia , Modelos Anatômicos , Modelos Estatísticos , Análise de Componente Principal , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA