Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EJVES Vasc Forum ; 59: 8-14, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213485

RESUMO

Objective: Little is known about the cardiovascular changes after TEVAR and regarding the impact on aortic stiffness for different stent graft generations specifically, following changes in device design. The present study evaluated the stent graft induced aortic stiffening of two generations of the Valiant thoracic aortic stent graft. Methods: This was an ex vivo porcine investigation using an experimental mock circulatory loop. Thoracic aortas of young healthy pigs were harvested and connected to the mock circulatory loop. At a 60 bpm heart rate and stable mean arterial pressure, baseline aortic characteristics were obtained. Pulse wave velocity (PWV) was calculated before and after stent graft deployment. Paired and independent sample t tests or their non-parametric alternatives were performed to test for differences where appropriate. Results: Twenty porcine thoracic aortas were divided into two equal subgroups, in which a Valiant Captivia or a Valiant Navion stent graft was deployed. Both stent grafts were similar in diameter and length. Baseline aortic characteristics did not differ between the subgroups. Mean arterial pressure values did not change after either stent graft, while pulse pressures increased statistically significantly after Captivia (mean 44 ± 10 mmHg to 51 ± 13 mmHg, p = .002) but not after Navion. Mean baseline PWV increased after both Captivia (4.4 ± 0.6 m/s to 4.8 ± 0.7 m/s, p = .007) and Navion (4.6 ± 0.7 m/s to 4.9 ± 0.7 m/s, p = .002). There was no statistically significant difference in the mean percentage increase in PWV for either subgroup (8 ± 4% vs. 6 ± 4%, p = .25). Conclusion: These experimental findings showed no statistically significant difference in the percentage increase of aortic PWV after either stent graft generation and confirm that TEVAR increases aortic PWV. As a surrogate for aortic stiffness, this calls for further improvements in future thoracic aortic stent graft designs regarding device compliance.

2.
Ann Biomed Eng ; 50(12): 1941-1953, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35854187

RESUMO

Thoracic Endovascular Aortic Repair (TEVAR) is the preferred treatment option for thoracic aortic pathologies and consists of inserting a self-expandable stent-graft into the pathological region to restore the lumen. Computational models play a significant role in procedural planning and must be reliable. For this reason, in this work, high-fidelity Finite Element (FE) simulations are developed to model thoracic stent-grafts. Experimental crimp/release tests are performed to calibrate stent-grafts material parameters. Stent pre-stress is included in the stent-graft model. A new methodology for replicating device insertion and deployment with explicit FE simulations is proposed. To validate this simulation, the stent-graft is experimentally released into a 3D rigid aortic phantom with physiological anatomy and inspected in a computed tomography (CT) scan at different time points during deployment with an ad-hoc set-up. A verification analysis of the adopted modeling features compared to the literature is performed. With the proposed methodology the error with respect to the CT is on average 0.92 ± 0.64%, while it is higher when literature models are adopted (on average 4.77 ± 1.83%). The presented FE tool is versatile and customizable for different commercial devices and applicable to patient-specific analyses.


Assuntos
Implante de Prótese Vascular , Procedimentos Endovasculares , Treinamento com Simulação de Alta Fidelidade , Humanos , Prótese Vascular , Stents , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/cirurgia , Resultado do Tratamento , Desenho de Prótese
3.
J Neural Eng ; 18(4)2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34153949

RESUMO

Objective. Bioelectronic medicine is opening new perspectives for the treatment of some major chronic diseases through the physical modulation of autonomic nervous system activity. Being the main peripheral route for electrical signals between central nervous system and visceral organs, the vagus nerve (VN) is one of the most promising targets. Closed-loop VN stimulation (VNS) would be crucial to increase effectiveness of this approach. Therefore, the extrapolation of useful physiological information from VN electrical activity would represent an invaluable source for single-target applications. Here, we present an advanced decoding algorithm novel to VN studies and properly detecting different functional changes from VN signals.Approach. VN signals were recorded using intraneural electrodes in anaesthetized pigs during cardiovascular and respiratory challenges mimicking increases in arterial blood pressure, tidal volume and respiratory rate. We developed a decoding algorithm that combines discrete wavelet transformation, principal component analysis, and ensemble learning made of classification trees.Main results. The new decoding algorithm robustly achieved high accuracy levels in identifying different functional changes and discriminating among them. Interestingly our findings suggest that electrodes positioning plays an important role on decoding performances. We also introduced a new index for the characterization of recording and decoding performance of neural interfaces. Finally, by combining an anatomically validated hybrid neural model and discrimination analysis, we provided new evidence suggesting a functional topographical organization of VN fascicles.Significance. This study represents an important step towards the comprehension of VN signaling, paving the way for the development of effective closed-loop VNS systems.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Estimulação do Nervo Vago , Animais , Sistema Nervoso Autônomo , Eletrodos , Suínos , Nervo Vago
4.
IEEE Open J Eng Med Biol ; 1: 23-32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35402964

RESUMO

Objective: Ultrasound (US) stimulation carries the promise of a selective, reversible, and non-invasive modulation of neural activity without the need for genetic manipulation of neural structures. However, the mechanisms of US-induced generation of action potentials (APs) are still unclear. Methods: Here we address this issue by analyzing intracellularly recorded responses of leech nociceptive neurons to controlled delivery of US. Results: US induced a depolarization linearly accumulating in time and outlasting the duration of the stimulation. Spiking activity was reliably induced for an optimal US intensity range. Moreover, we found that APs induced by US differ in smaller amplitude and faster repolarization from those induced by electrical stimulation in the same cell but display the same repolarization rate. Conclusions: These results shed light on the mechanism by which spikes are induced by US and pave the way for designing more efficient US stimulation patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA