Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611871

RESUMO

Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are endogenous lipids that act as agonists of the peroxisome proliferator-activated receptor α (PPARα). Recently, an interest in the role of these lipids in malignant tumors has emerged. Nevertheless, the effects of OEA and PEA on human neuroblastoma cells are still not documented. Type I interferons (IFNs) are immunomodulatory cytokines endowed with antiviral and anti-proliferative actions and are used in the treatment of various pathologies such as different cancer forms (i.e., non-Hodgkin's lymphoma, melanoma, leukemia), hepatitis B, hepatitis C, multiple sclerosis, and many others. In this study, we investigated the effect of OEA and PEA on human neuroblastoma SH-SY5Y cells treated with IFNß. We focused on evaluating cell viability, cell proliferation, and cell signaling. Co-exposure to either OEA or PEA along with IFNß leads to increased apoptotic cell death marked by the cleavage of caspase 3 and poly-(ADP ribose) polymerase (PARP) alongside a decrease in survivin and IKBα levels. Moreover, we found that OEA and PEA did not affect IFNß signaling through the JAK-STAT pathway and the STAT1-inducible protein kinase R (PKR). OEA and PEA also increased the phosphorylation of p38 MAP kinase and programmed death-ligand 1 (PD-L1) expression both in full cell lysate and surface membranes. Furthermore, GW6471, a PPARα inhibitor, and the genetic silencing of the receptor were shown to lower PD-L1 and cleaved PARP levels. These results reveal the presence of a novel mechanism, independent of the IFNß-prompted pathway, by which OEA and PEA can directly impair cell survival, proliferation, and clonogenicity through modulating and potentiating the intrinsic apoptotic pathway in human SH-SY5Y cells.


Assuntos
Amidas , Endocanabinoides , Etanolaminas , Neuroblastoma , Ácidos Oleicos , Humanos , Neuroblastoma/tratamento farmacológico , Antígeno B7-H1 , Janus Quinases , PPAR alfa , Inibidores de Poli(ADP-Ribose) Polimerases , Fatores de Transcrição STAT , Transdução de Sinais , Apoptose , Ácidos Palmíticos/farmacologia
2.
Nutrients ; 15(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37686862

RESUMO

Anorexia nervosa (AN) is a complex eating disorder characterized by reduced caloric intake to achieve body-weight loss. Furthermore, over-exercise is commonly reported. In recent years, animal models of AN have provided evidence for neuroplasticity changes in specific brain areas of the mesocorticolimbic circuit, which controls a multitude of functions including reward, emotion, motivation, and cognition. The activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene that modulates several forms of synaptic plasticity and has been linked to neuropsychiatric illness. Since the role of Arc in AN has never been investigated, in this study we evaluated whether the anorexic-like phenotype reproduced by the activity-based anorexia (ABA) model may impact its expression in selected brain regions that belong to the mesocorticolimbic circuit (i.e., prefrontal cortex, nucleus accumbens, and hippocampus). The marker of neuronal activation c-Fos was also assessed. We found that the expression of both markers increased in all the analyzed brain areas of ABA rats in comparison to the control groups. Moreover, a negative correlation between the density of Arc-positive cells and body-weight loss was found. Together, our findings suggest the importance of Arc and neuroplasticity changes within the brain circuits involved in dysfunctional behaviors associated with AN.


Assuntos
Anorexia Nervosa , Animais , Ratos , Anorexia , Modelos Animais , Citoesqueleto , Redução de Peso
3.
Eur J Pharmacol ; 959: 176064, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37758013

RESUMO

We previously reported that in different cell types antidepressant drugs activate lysophosphatidic acid (LPA) LPA1 receptor to induce proliferative and prosurvival responses. Here, we further characterize this unique action of antidepressants by examining their effects on two additional LPA receptor family members, LPA2 and LPA3. Human LPA1-3 receptors were stably expressed in HEK-293 cells (HEK-LPA1, -LPA2 and -LPA3 cells) and their functional activity was determined by Western blot and immunofluorescence. LPA effectively stimulated the phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in HEK-LPA1, -LPA2, and -LPA3 cells. The tricyclic antidepressants amitriptyline, clomipramine, imipramine and desipramine increased phospho-ERK1/2 levels in HEK-LPA1 and -LPA3 cells but were relatively poor agonists in LPA2-expressing cells. The tetracyclic antidepressants mianserin and mirtazapine were active at all three LPA receptors. When combined with LPA, both amitriptyline and mianserin potentiated Gi/o-mediated phosphorylation of ERK1/2 induced by LPA in HEK-LPA1, -LPA2 and -LPA3 cells, CHO-K1 fibroblasts and HT22 hippocampal neuroblasts. This potentiation was associated with enhanced phosphorylation of CREB and S6 ribosomal protein, two molecular targets of activated ERK1/2. The antidepressants also potentiated LPA-induced Gq/11-mediated phosphorylation of AMP-activated protein kinase in HEK-LPA1 and -LPA3 cells. Conversely, amitriptyline and mianserin were found to inhibit LPA-induced Rho activation in HEK-LPA1 and LPA2 cells. These results indicate that tricyclic and tetracyclic antidepressants can act on LPA1, LPA2 and LPA3 receptor subtypes and exert differential effects on LPA signalling through these receptors.


Assuntos
Amitriptilina , Mianserina , Humanos , Mianserina/farmacologia , Amitriptilina/farmacologia , Células HEK293 , Antidepressivos/farmacologia , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo
4.
Nutrients ; 15(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37432348

RESUMO

The pathophysiology of Anorexia Nervosa (AN) has not been fully elucidated. Anaplastic lymphoma kinase (ALK) receptor is a protein-tyrosine kinase mainly known as a key oncogenic driver. Recently, a genetic deletion of ALK in mice has been found to increase energy expenditure and confers resistance to obesity in these animals, suggesting its role in the regulation of thinness. Here, we investigated the expression of ALK and the downstream intracellular pathways in female rats subjected to the activity-based anorexia (ABA) model, which reproduces important features of human AN. In the hypothalamic lysates of ABA rats, we found a reduction in ALK receptor expression, a downregulation of Akt phosphorylation, and no change in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation. After the recovery from body weight loss, ALK receptor expression returned to the control baseline values, while it was again suppressed during a second cycle of ABA induction. Overall, this evidence suggests a possible involvement of the ALK receptor in the pathophysiology of AN, that may be implicated in its stabilization, resistance, and/or its exacerbation.


Assuntos
Anorexia Nervosa , Humanos , Feminino , Animais , Camundongos , Ratos , Quinase do Linfoma Anaplásico , Anorexia , Proteínas Tirosina Quinases , Fosforilação
5.
Behav Brain Res ; 444: 114374, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36863461

RESUMO

Compelling data support altered dopamine (DA) and serotonin (5-HT) signaling in anorexia nervosa (AN). However, their exact role in the etiopathogenesis of AN has yet to be elucidated. Here, we evaluated the corticolimbic brain levels of DA and 5-HT in the induction and recovery phases of the activity-based anorexia (ABA) model of AN. We exposed female rats to the ABA paradigm and measured the levels of DA, 5-HT, the metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and the dopaminergic type 2 (D2) receptors density in feeding- and reward-implicated brain regions (i.e., cerebral cortex, Cx; prefrontal cortex, PFC; caudate putamen, CPu; nucleus accumbens, NAcc; amygdala, Amy; hypothalamus, Hyp; hippocampus, Hipp). DA levels were significantly increased in the Cx, PFC and NAcc, while 5-HT was significantly enhanced in the NAcc and Hipp of ABA rats. Following recovery, DA was still elevated in the NAcc, while 5-HT was increased in the Hyp of recovered ABA rats. DA and 5-HT turnover were impaired at both ABA induction and recovery. D2 receptors density was increased in the NAcc shell. These results provide further proof of the impairment of the dopaminergic and serotoninergic systems in the brain of ABA rats and support the knowledge of the involvement of these two important neurotransmitter systems in the development and progression of AN. Thus, providing new insights on the corticolimbic regions involved in the monoamine dysregulations in the ABA model of AN.


Assuntos
Dopamina , Serotonina , Ratos , Feminino , Animais , Dopamina/metabolismo , Serotonina/metabolismo , Encéfalo/metabolismo , Ácido Homovanílico , Núcleo Accumbens/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ácido Hidroxi-Indolacético/metabolismo
6.
Molecules ; 27(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807384

RESUMO

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that might lead to very serious consequences. Notably, mental status change, brain confusion, and smell and taste disorders along with neurological complaints have been reported in patients infected with SARS-CoV-2. Furthermore, human brain tissue autopsies from COVID-19 patients show the presence of SARS-CoV-2 neuroinvasion, which correlates with the manifestation of meningitis, encephalitis, leukocyte infiltration, and neuronal damage. The olfactory mucosa has been suggested as a way of entry into the brain. SARS-CoV-2 infection is also known to provoke a hyper-inflammatory reaction with an exponential increase in the production of pro-inflammatory cytokines leading to systemic responses, even in the absence of direct infection of brain cells. Angiotensin-converting enzyme 2 (ACE2), the entry receptor of SARS-CoV-2, has been extensively demonstrated to be present in the periphery, neurons, and glial cells in different brain regions. To dissect the details of neurological complications and develop therapies helping COVID-19 survivors regain pre-infection quality of life, the development of robust clinical models is highly warranted. Several human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models have been developed and used for antiviral drug screening and vaccine development, as well as for better understanding of the molecular pathogenetic mechanisms of SARS-CoV-2 infection. In this review, we summarize recent results from the studies involving two such mouse models, namely K18- and CAG-hACE2 transgenics, to evaluate the direct and indirect impact of SARS-CoV-2 infection on the central nervous system.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , Modelos Animais de Doenças , Melfalan , Camundongos , Camundongos Transgênicos , Peptidil Dipeptidase A , Qualidade de Vida , gama-Globulinas
7.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409209

RESUMO

Histone deacetylase (HDAC) inhibitors are novel chemotherapy agents with potential utility in the treatment of neuroblastoma, the most frequent solid tumor of childhood. Previous studies have shown that the exposure of human neuroblastoma cells to some HDAC inhibitors enhanced the expression of the common neurotrophin receptor p75NTR. In the present study we investigated whether the upregulation of p75NTR could be exploited to render neuroblastoma cells susceptible to the cytotoxic action of an anti-p75NTR antibody conjugated to the toxin saporin-S6 (p75IgG-Sap). We found that two well-characterized HDAC inhibitors, valproic acid (VPA) and entinostat, were able to induce a strong expression of p75NTR in different human neuroblastoma cell lines but not in other cells, with entinostat, displaying a greater efficacy than VPA. Cell pretreatment with entinostat enhanced p75NTR internalization and intracellular saporin-S6 delivery following p75IgG-Sap exposure. The addition of p75IgG-Sap had no effect on vehicle-pretreated cells but potentiated the apoptotic cell death that was induced by entinostat. In three-dimensional neuroblastoma cell cultures, the subsequent treatment with p75IgG-Sap enhanced the inhibition of spheroid growth and the impairment of cell viability that was produced by entinostat. In athymic mice bearing neuroblastoma xenografts, chronic treatment with entinostat increased the expression of p75NTR in tumors but not in liver, kidney, heart, and cerebellum. The administration of p75IgG-Sap induced apoptosis only in tumors of mice that were pretreated with entinostat. These findings define a novel experimental strategy to selectively eliminate neuroblastoma cells based on the sequential treatment with entinostat and a toxin-conjugated anti-p75NTR antibody.


Assuntos
Antineoplásicos , Imunotoxinas , Neuroblastoma , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Imunotoxinas/farmacologia , Camundongos , Neuroblastoma/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Saporinas/metabolismo , Regulação para Cima , Ácido Valproico/farmacologia
8.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360553

RESUMO

Neurotrophins and their receptors are relevant factors in controlling neuroblastoma growth and progression. The histone deacetylase (HDAC) inhibitor valproic acid (VPA) has been shown to downregulate TrkB and upregulate the p75NTR/sortilin receptor complex. In the present study, we investigated the VPA effect on the expression of the neurotrophin-3 (NT-3) receptor TrkC, a favorable prognostic marker of neuroblastoma. We found that VPA induced the expression of both full-length and truncated (TrkC-T1) isoforms of TrkC in human neuroblastoma cell lines without (SH-SY5Y) and with (Kelly, BE(2)-C and IMR 32) MYCN amplification. VPA enhanced cell surface expression of the receptor and increased Akt and ERK1/2 activation by NT-3. The HDAC inhibitors entinostat, romidepsin and vorinostat also increased TrkC in SH-SY5Y, Kelly and BE(2)-C but not IMR 32 cells. TrkC upregulation by VPA involved induction of RUNX3, stimulation of ERK1/2 and JNK, and ERK1/2-mediated Egr1 expression. In SH-SY5Y cell monolayers and spheroids the exposure to NT-3 enhanced the apoptotic cascade triggered by VPA. Gene silencing of both TrkC-T1 and p75NTR prevented the NT-3 proapoptotic effect. Moreover, NT-3 enhanced p75NTR/TrkC-T1 co-immunoprecipitation. The results indicate that VPA upregulates TrkC by activating epigenetic mechanisms and signaling pathways, and sensitizes neuroblastoma cells to NT-3-induced apoptosis.


Assuntos
Anticonvulsivantes/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Terapia de Alvo Molecular , Neuroblastoma/tratamento farmacológico , Receptor trkC/metabolismo , Ácido Valproico/farmacologia , Apoptose , Proliferação de Células , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Receptor trkC/genética , Células Tumorais Cultivadas
9.
Life Sci ; 276: 119407, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794254

RESUMO

AIMS: The aim of the study was to investigate the interaction between cannabinoid CB1/CB2 and lysophosphatidic acid (LPA) receptors in controlling neuronal signaling and fate. METHODS: HT22 hippocampal cells were treated with different cannabinoid and LPA receptor agonists and antagonists. Western blot and immunofluorescence microscopy were used to study intracellular signaling and the expression of apoptotic markers. Cell viability was determined by a luminescence assay. KEY FINDINGS: Cannabinoid agonists induced activation of both ERK1/2 and p38 MAP kinases. The effects of the CB1/CB2 receptor agonist HU210 were antagonized by the CB1 antagonist rimonabant, whereas the responses to the CB2 agonist JWH133 were blocked by the CB2 antagonist SR144528. HU210 reduced the apoptotic cell death induced by the pro-inflammatory cytokine TNF-α, whereas JWH133 enhanced the cytokine cytotoxicity. Blockade of ERK1/2 and p38 MAPK activation abrogated the HU210 pro-survival and the JWH133 pro-apoptotic effects, respectively. HU210 and the endocannabinoid anandamide, but not JWH133, potentiated ERK1/2 stimulation by LPA and the tricyclic antidepressant amitriptyline acting through the LPA1 receptor. HU210 enhanced amitriptyline-stimulated CREB phosphorylation and protection against TNF-α-induced apoptosis, whereas JWH133 had no effect. ERK1/2 stimulation by either HU210 or amitriptyline was dependent on fibroblast growth factor receptor (FGF-R) kinase activity and the combination of the two stimulants induced FGF-R phosphorylation. Moreover, the CB1 receptor was found to co-immunoprecipitate with the LPA1 receptor. CONCLUSIONS: In HT22 hippocampal cells CB1 and CB2 receptors differentially regulate TNF-α-induced apoptosis and CB1 receptors positively interact with amitriptyline-stimulated LPA1 in promoting FGF-R-mediated ERK1/2 signaling and neuroprotection.


Assuntos
Apoptose , Agonistas de Receptores de Canabinoides/farmacologia , Hipocampo/patologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Inibidores da Captação Adrenérgica/farmacologia , Amitriptilina/farmacologia , Animais , Sobrevivência Celular , Células Cultivadas , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Receptores de Ácidos Lisofosfatídicos/genética , Transdução de Sinais
10.
Apoptosis ; 25(9-10): 697-714, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32712736

RESUMO

The antiepileptic and mood stabilizer agent valproic acid (VPA) has been shown to exert anti-tumour effects and to cause neuronal damage in the developing brain through mechanisms not completely understood. In the present study we show that prolonged exposure of SH-SY5Y and LAN-1 human neuroblastoma cells to clinically relevant concentrations of VPA caused a marked induction of the protein and transcript levels of the common neurotrophin receptor p75NTR and its co-receptor sortilin, two promoters of apoptotic cell death in response to proneurotrophins. VPA induction of p75NTR and sortilin was associated with an increase in plasma membrane expression of the receptor proteins and was mimicked by cell treatment with several histone deacetylase (HDAC) inhibitors. VPA and HDAC1 knockdown decreased the level of EZH2, a core component of the polycomb repressive complex 2, and upregulated the transcription factor CASZ1, a positive regulator of p75NTR. CASZ1 knockdown attenuated VPA-induced p75NTR overexpression. Cell treatment with VPA favoured proNGF-induced p75NTR/sortilin interaction and the exposure to proNGF enhanced JNK activation and apoptotic cell death elicited by VPA. Depletion of p75NTR or addition of the sortilin agonist neurotensin to block proNGF/sortilin interaction reduced the apoptotic response to VPA and proNGF. Exposure of mouse cerebellar granule cells to VPA upregulated p75NTR and sortilin and induced apoptosis which was enhanced by proNGF. These results indicate that VPA upregulates p75NTR apoptotic cell signalling through an epigenetic mechanism involving HDAC inhibition and suggest that this effect may contribute to the anti-neuroblastoma and neurotoxic effects of VPA.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Apoptose/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Proteínas do Tecido Nervoso/genética , Receptores de Fator de Crescimento Neural/genética , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Desacetilase 1/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Fator de Crescimento Neural/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Neurônios/metabolismo , Neurônios/patologia , Cultura Primária de Células , Fatores de Transcrição/genética , Ácido Valproico/farmacologia
11.
Eur J Pharmacol ; 873: 172963, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32007501

RESUMO

Preclinical and clinical studies have indicated that antidepressants can promote inflammation and fibrogenesis, particularly in the lung, by mechanisms not fully elucidated. We have previously shown that different classes of antidepressants can activate the lysophosphatidic acid (LPA) receptor LPA1, a major pathogenetic mediator of tissue fibrosis. The aim of the present study was to investigate whether in cultured human dermal and lung fibroblasts antidepressants could trigger LPA1-mediated profibrotic responses. In both cell types amitriptyline, clomipramine and mianserin mimicked the ability of LPA to induce the phosphorylation/activation of extracellular signal -regulated kinases 1 and 2 (ERK1/2), which was blocked by the selective LPA1 receptor antagonist AM966 and the LPA1/3 antagonist Ki16425. Antidepressant-induced ERK1/2 stimulation was absent in fibroblasts stably depleted of LPA1 by short hairpin RNA transfection and was prevented by pertussis toxin, an uncoupler of receptors from Gi/o proteins. Like LPA, antidepressants stimulated fibroblasts proliferation and this effect was blocked by either AM966 or the MEK1/2 inhibitor PD98059. Moreover, by acting through LPA1 antidepressants induced the expression of α-smooth muscle actin (α-SMA), a marker of myofibroblast differentiation, and caused an ERK1/2-dependent increase in the cellular levels of transforming growth factor-ß (TGF-ß)1, a potent fibrogenic cytokine. Pharmacological blockade of TGF-ß receptor type 1 prevented antidepressant- and LPA-induced α-SMA expression. These data indicate that in human dermal and lung fibroblasts different antidepressants can induce proliferative and differentiating responses by activating the LPA1 receptor coupled to ERK1/2 signalling and suggest that this property may contribute to the promotion of tissue fibrosis by these drugs.


Assuntos
Antidepressivos/efeitos adversos , Fibrose/induzido quimicamente , Receptores de Ácidos Lisofosfatídicos/efeitos dos fármacos , Actinas/biossíntese , Amitriptilina/farmacologia , Proliferação de Células/efeitos dos fármacos , Clomipramina/farmacologia , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibrose/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mianserina/farmacologia , RNA Interferente Pequeno/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/efeitos dos fármacos
12.
J Pharmacol Exp Ther ; 370(3): 490-503, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31308194

RESUMO

Valproic acid (VPA) has been shown to regulate the levels of brain-derived neurotrophic factor (BDNF), but it is not known whether this drug can affect the neuronal responses to BDNF. In the present study, we show that in retinoic acid-differentiated SH-SY5Y human neuroblastoma cells, prolonged exposure to VPA reduces the expression of the BDNF receptor TrkB at the protein and mRNA levels and inhibits the intracellular signaling, neurotrophic activity, and prosurvival function of BDNF. VPA downregulates TrkB and curtails BDNF-induced signaling also in differentiated Kelly and LAN-1 neuroblastoma cells and primary mouse cortical neurons. The VPA effect is mimicked by several histone deacetylase (HDAC) inhibitors, including the class I HDAC inhibitors entinostat and romidepsin. Conversely, the class II HDAC inhibitor MC1568, the HDAC6 inhibitor tubacin, the HDAC8 inhibitor PCI-34051, and the VPA derivative valpromide have no effect. In neuroblastoma cells and primary neurons both VPA and entinostat increase the cellular levels of the transcription factor RUNX3, which negatively regulates TrkB gene expression. Treatment with RUNX3 siRNA attenuates VPA-induced RUNX3 elevation and TrkB downregulation. VPA, entinostat, HDAC1 depletion by siRNA, and 3-deazaneplanocin A (DZNep), an inhibitor of the polycomb repressor complex 2 (PRC2), decrease the PRC2 core component EZH2, a RUNX3 suppressor. Like VPA, HDAC1 depletion and DZNep increase RUNX3 and decrease TrkB expression. These results indicate that VPA downregulates TrkB through epigenetic mechanisms involving the EZH2/RUNX3 axis and provide evidence that this effect implicates relevant consequences with regard to BDNF efficacy in stimulating intracellular signaling and functional responses. SIGNIFICANCE STATEMENT: The tropomyosin-related kinase receptor B (TrkB) mediates the stimulatory effects of brain-derived neurotrophic factor (BDNF) on neuronal growth, differentiation, and survival and is highly expressed in aggressive neuroblastoma and other tumors. Here we show that exposure to valproic acid (VPA) downregulates TrkB expression and functional activity in retinoic acid-differentiated human neuroblastoma cell lines and primary mouse cortical neurons. The effects of VPA are mimicked by other histone deacetylase (HDAC) inhibitors and HDAC1 knockdown and appear to be mediated by an epigenetic mechanism involving the upregulation of RUNX3, a suppressor of TrkB gene expression. TrkB downregulation may have relevance for the use of VPA as a potential therapeutic agent in neuroblastoma and other pathologies characterized by an excessive BDNF/TrkB signaling.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Receptor trkB/genética , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Valproico/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Histona Desacetilase 1/deficiência , Histona Desacetilase 1/genética , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia
13.
Apoptosis ; 24(5-6): 478-498, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30840161

RESUMO

Tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine considered to be implicated in the pathogenesis of major depressive disorder, is a critical regulator of neuronal cell fate. In the present study we found that TNF-α-induced apoptosis of HT22 hippocampal cells, a neuroblast-like cell line, was markedly attenuated by the antidepressants mianserin, mirtazapine and amitriptyline. The anti-apoptotic effect of the antidepressants was blocked by either pharmacological inhibition or gene silencing of the lysophosphatidic acid receptor LPA1. Mianserin failed to affect TNF-α-induced caspase 8 activation, but inhibited the loss of mitochondrial membrane potential, the release of cytochrome c from mitochondria, procaspase 9 cleavage and downstream activation of caspase 3 in response to the cytokine. By acting through LPA1, mianserin also attenuated the enhanced pro-apoptotic response induced by the combination of TNF-α with other pro-inflammatory cytokines. TNF-α appeared to counterbalance its own pro-apoptotic response by activating NF-kB, ERK1/2 and JNK. Antidepressants had no significant effects on NF-kB activation, but potentiated the TAK-1-dependent phosphorylation of ERK1/2 and JNK elicited by the cytokine. This synergistic interaction was associated with enhanced JNK-mediated phosphorylation of Bcl-2 at Ser70 and increased ERK1/2-dependent mitochondrial accumulation of Mcl-1, two anti-apoptotic proteins that promote mitochondrial outer membrane stability. These results indicate that certain antidepressants, by activating LPA1 signalling, protect HT22 hippocampal cells from TNF-α-induced apoptosis through a mechanism involving, at least in part, the potentiation of the pro-survival pathways activated by the cytokine.


Assuntos
Antidepressivos/farmacologia , Apoptose/efeitos dos fármacos , Neurônios/patologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inativação Gênica , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo
14.
J Neurochem ; 146(5): 526-539, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29772059

RESUMO

The chemokine CCL5 prevents neuronal cell death mediated both by amyloid ß, as well as the human immunodeficiency virus viral proteins gp120 and Tat. Because CCL5 binds to CCR5, CCR3 and/or CCR1 receptors, it remains unclear which of these receptors plays a role in neuroprotection. Indeed, CCL5 also has neuroprotective activity in cells lacking these receptors. CCL5 may bind to a G-protein-coupled receptor 75 (GPR75), which encodes for a 540 amino-acid orphan receptor of the Gqα family. In this study, we have used SH-SY5Y human neuroblastoma cells to characterize whether CCL5 could activate a Gq signaling through GPR75. Both qPCR and flow cytometry show that these cells express GPR75 but do not express CCR5, CCR3 or CCR1 receptors. SY-SY5Y cells were then used to examine CCL5-mediated signaling. We report that CCL5 promotes a time- and concentration-dependent phosphorylation of protein kinase B (AKT), glycogen synthase kinase 3ß, and extracellular signal-regulated kinase (ERK) 1/2. Specific antagonists of CCR5, CCR3, and CCR1 did not prevent CCL5 from increasing phosphorylated AKT or ERK. Moreover, CCL5 promotes a time-dependent internalization of GPR75. Lastly, knocking down GPR75 expression by a CRISPR-Cas9 approach inhibited the ability of CCL5 to activate pERK in SH-SY5Y cells. Therefore, we propose that GPR75 is a novel receptor for CCL5 that could explain some of the pharmacological action of this chemokine. These findings may help in the development of small molecule GPR75 agonists that mimic CCL5. Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Quimiocina CCL5/metabolismo , Regulação da Expressão Gênica/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Antineoplásicos/farmacologia , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Quimiocina CCL5/genética , Quimiocina CCL5/farmacologia , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Humanos , Mutagênese/genética , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Toxina Pertussis/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Ratos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Linfócitos T , Tretinoína/farmacologia
15.
Neurochem Res ; 43(2): 245-258, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28994003

RESUMO

The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a key regulator of the cellular energy metabolism and may induce either cell survival or death. We previously reported that in SH-SY5Y human neuroblastoma cells stimulation of muscarinic acetylcholine receptors (mAChRs) activate AMPK by triggering store-operated Ca2+ entry (SOCE). However, whether mAChRs may control AMPK activity by regulating additional mechanisms beyond SOCE remains to be investigated. In the present study we examined the effects of mAChRs on AMPK when SOCE was induced by the sarco-endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. We found that in SH-SY5Y cells depleted of Ca2+ by thapsigargin, the re-addition Ca2+ to the medium stimulated AMPK phosphorylation at Thr172, which is required for full kinase activity. This response occurred through SOCE, as it was blocked by either the SOCE modulator 2-aminoethoxydiphephenyl borate, knockdown of the SOCE molecular component STIM1, or inhibition of Ca2+/calmodulin (CaM)-dependent protein kinase kinase ß (CaMKKß). In thapsigargin-pretreated cells, stimulation of pharmacologically defined M3 mAChRs potentiated SOCE-induced AMPK activation. This potentiation did not involve an increased Ca2+ influx, but was associated with CaM mobilization from membrane to cytosol, increased CaM/CaMKKß interaction, and enhanced CaMKK stimulation by thapsigargin-induced SOCE. In thapsigargin-pretreated cells Ca2+ re-addition stimulated glucose uptake and increased the membrane expression of the glucose transporter GLUT1. Both responses were significantly potentiated by mAChRs. These data indicate that in human neuroblastoma cells mAChRs up-regulate AMPK and the downstream glucose uptake by triggering not only SOCE but also CaM translocation and enhanced formation of active CaM/CaMKKß complexes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Transporte Biológico/efeitos dos fármacos , Glucose/metabolismo , Receptores Muscarínicos/metabolismo , Tapsigargina/farmacologia , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Linhagem Celular , Humanos , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Molécula 1 de Interação Estromal/metabolismo
16.
J Neurochem ; 143(2): 183-197, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28815598

RESUMO

Both lysophosphatidic acid (LPA) and antidepressants have been shown to affect neuronal survival and differentiation, but whether LPA signalling participates in the action of antidepressants is still unknown. In this study, we examined the role of LPA receptors in the regulation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activity and neuronal survival by the tetracyclic antidepressants, mianserin and mirtazapine in hippocampal neurons. In HT22 immortalized hippocampal cells, antidepressants and LPA induced a time- and concentration-dependent stimulation of ERK1/2 phosphorylation. This response was inhibited by either LPA1 and LPA1/3 selective antagonists or siRNA-induced LPA1 down-regulation, and enhanced by LPA1 over-expression. Conversely, the selective LPA2 antagonist H2L5186303 had no effect. Antidepressants induced cyclic AMP response element binding protein phosphorylation and this response was prevented by LPA1 blockade. ERK1/2 stimulation involved pertussis toxin-sensitive G proteins, Src tyrosine kinases and fibroblast growth factor receptor (FGF-R) activity. Tyrosine phosphorylation of FGF-R was enhanced by antidepressants through LPA1 . Serum withdrawal induced apoptotic death, as indicated by increased annexin V staining, caspase activation and cleavage of poly-ADP-ribose polymerase. Antidepressants inhibited the apoptotic cascade and this protective effect was curtailed by blockade of either LPA1 , ERK1/2 or FGF-R activity. Moreover, in primary mouse hippocampal neurons, mianserin acting through LPA1 increased phospho-ERK1/2 and protected from apoptosis induced by removal of growth supplement. These data indicate that in neurons endogenously expressed LPA1 receptors mediate intracellular signalling and neuroprotection by tetracyclic antidepressants.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Antidepressivos Tricíclicos/farmacologia , Hipocampo/fisiologia , Neurônios/fisiologia , Neuroproteção/fisiologia , Receptores de Ácidos Lisofosfatídicos/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Hipocampo/efeitos dos fármacos , Humanos , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/fisiologia , Masculino , Mianserina/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
Mol Neurobiol ; 54(3): 1825-1843, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26887385

RESUMO

Although clinically useful for the treatment of various diseases, type I interferons (IFNs) have been implicated as causative factors of a number of neuroinflammatory disorders characterized by neuronal damage and altered CNS functions. As neurotrophin 3 (NT3) plays a critical role in neuroprotection, we examined the effects of IFN-ß on the signalling and functional activity of the NT3/TrkC system. We found that prolonged exposure of differentiated human SH-SY5Y neuroblastoma cells to IFN-ß impaired the ability of NT3 to induce transphosphorylation of the full-length TrkC receptor (TrkC-FL) and the phosphorylation of downstream signalling molecules, including PLCγ1, Akt, GSK-3ß and ERK1/2. NT3 was effective in protecting the cells against apoptosis triggered by serum withdrawal or thapsigargin but not IFN-ß. Prolonged exposure to the cytokine had little effects on TrkC-FL levels but markedly enhanced the messenger RNA (mRNA) and protein levels of the truncated isoform TrkC-T1, a dominant-negative receptor that inhibits TrkC-FL activity. Cell depletion of TrkC-T1 by small interfering RNA (siRNA) treatment enhanced NT3 signalling through TrkC-FL and allowed the neurotrophin to counteract IFN-ß-induced apoptosis. Furthermore, the upregulation of TrkC-T1 by IFN-ß was associated with the inhibition of NT3-induced recruitment of the scaffold protein tamalin to TrkC-T1 and tamalin tyrosine phosphorylation. These data indicate that IFN-ß exerts a negative control on NT3 pro-survival signalling through a novel mechanism involving the upregulation of TrkC-T1.


Assuntos
Interferon beta/farmacologia , Neurotrofina 3/antagonistas & inibidores , Neurotrofina 3/metabolismo , Receptor trkC/biossíntese , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Expressão Gênica , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Camundongos , Neurotrofina 3/genética , Receptor trkC/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
18.
Eur J Pharmacol ; 794: 135-146, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27876620

RESUMO

The present study shows that the GABAB positive allosteric modulators (PAMs) CGP7930 and GS39783 stimulate extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) signalling in cells that do not express functional GABAB receptors. In human SH-SY5Y neuroblastoma cells, CGP7930 and GS39783 induced a time- and concentration-dependent increase in ERK1/2 phosphorylation with potencies similar to those displayed as GABAB PAMs. Conversely, γ-aminobutyric acid and the GABAB receptor agonists (-)baclofen and SKF97541 were completely inactive. CGP7930 and GS39783 enhanced the nuclear localization of phospho-ERK1/2 and CGP7930 promoted the phosphorylation of the transcription factors Elk-1 and CREB. CGP7930-induced ERK1/2 stimulation was insensitive to pertussis toxin, the Gq/11 antagonist YM254890 and the phospholipase C-ß inhibitor U-73122, but was completely blocked by the MEK1/2 inhibitor PD98059. Inhibition of insulin-like growth factor-1, platelet--derived growth factor, phosphoinositide 3-kinase and Akt activities potentiated CGP7930-induced ERK1/2 phosphorylation. CGP7930 enhanced the phosphorylation of myristoylated alanine-rich protein kinase C (PKC) substrate and inhibition of PKC attenuated the ERK1/2 stimulation. Over-expression of N17Ras, a dominant negative mutant of c-Ras, or inhibition of c-Raf by GW5074 partially antagonized CGP7930-induced ERK1/2 activation. CGP7930 enhanced the phosphorylation of transforming growth factor-ß-activated kinase 1 (TAK-1) and TAK-1 inhibition by 5Z-7-oxozeaenol reduced CGP7930-induced ERK1/2 phosphorylation. CGP7930 activated ERK1/2 in CHO-K1 fibroblasts, which lack endogenous GABAB receptors, but not in HEK-293 cells, indicating that the response displayed cell type specificity. These data demonstrate that CGP7930 and GS39783 can trigger ERK1/2 signalling, a critical modulator of mood and drug addiction, independently of an action on GABAB receptors.


Assuntos
Ciclopentanos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fenóis/farmacologia , Pirimidinas/farmacologia , Receptores de GABA-B/deficiência , Receptores de GABA-B/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Fatores de Tempo , Quinases raf/metabolismo , Proteínas ras/metabolismo
19.
J Pharmacol Exp Ther ; 359(2): 340-353, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27605627

RESUMO

Antidepressants have been shown to affect glial cell functions and intracellular signaling through mechanisms that are still not completely understood. In the present study, we provide evidence that in glial cells the lysophosphatidic acid (LPA) receptor LPA1 mediates antidepressant-induced growth factor receptor transactivation, ERK1/2 signaling, and protection from oxidative stress. Thus, in C6 glioma cells and rat cortical astrocytes, ERK1/2 activation induced by either amitriptyline or mianserin was antagonized by Ki16425 and VPC 12249 (S), which block LPA1 and LPA3 receptors, and by AM966, which selectively blocks LPA1 Cell depletion of LPA1 with siRNA treatment markedly reduced antidepressant- and LPA-induced ERK1/2 phosphorylation. LPA1 blockade prevented antidepressant-induced phosphorylation of the transcription factors CREB and Elk-1. Antidepressants and LPA signaling to ERK1/2 was abrogated by cell treatment with pertussis toxin and by the inhibition of fibroblast growth factor (FGF) receptor (FGF-R) and platelet-derived growth factor receptor (PDGF-R) tyrosine kinases. Both Ki16425 and AM966 suppressed antidepressant-induced phosphorylation of FGF-R. Moreover, blockade of LPA1 or inhibition of FGF-R and PDGF-R activities prevented antidepressant-stimulated Akt and GSK-3ß phosphorylations. Mianserin protected C6 glioma cells and astrocytes from apoptotic cell death induced by H2O2, as indicated by increased cell viability, decreased expression of cleaved caspase 3, reduced cleavage of poly-ADP ribose polymerase and inhibition of DNA fragmentation. The protective effects of mianserin were antagonized by AM966. These data indicate that LPA1 constitutes a novel molecular target of the regulatory actions of tricyclic and tetracyclic antidepressants in glial cells.


Assuntos
Antidepressivos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuroglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Amitriptilina/farmacologia , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Técnicas de Silenciamento de Genes , Lisofosfolipídeos/farmacologia , Mianserina/farmacologia , Neuroglia/citologia , Neuroglia/metabolismo , Toxina Pertussis/toxicidade , Fosforilação/efeitos dos fármacos , Ratos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Ácidos Lisofosfatídicos/deficiência , Receptores de Ácidos Lisofosfatídicos/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Ativação Transcricional/efeitos dos fármacos , Proteínas Elk-1 do Domínio ets/metabolismo
20.
Br J Pharmacol ; 173(19): 2910-28, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27474091

RESUMO

BACKGROUND AND PURPOSE: Although clinically useful for their immunomodulatory, antiproliferative and antiviral properties, type I interferons (IFNs) are involved in the pathogenesis of several neurodegenerative/neuroinflammatory diseases. In the present study, we investigated the ability of cholinergic stimulation to protect from IFN-ß-induced neuronal apoptosis. EXPERIMENTAL APPROACH: The effects of the ACh receptor agonist carbachol (CCh) on IFN-ß-induced apoptosis of human SH-SY5Y neuroblastoma cells were examined by using western blots, immunofluorescence and cytofluorimetry. The involvement of muscarinic acetylcholine receptors (mAChRs) was assessed by using selective antagonists and siRNA transfection. Pharmacological inhibitors and overexpression of ERK2 and an ERK2 constitutively active form (ERK2-CA) were employed to study ERK1/2 signalling. The effects of oxotremorine-M (Oxo-M) on IFN-ß-induced apoptosis of mouse hippocampal neurons were examined by measuring cleaved caspase 3 expression. KEY RESULTS: In SH-SY5Y cells, CCh inhibited IFN-ß-induced mitochondrial cytochrome c release, activation of caspases 9, 7 and 3, PARP cleavage and DNA fragmentation. The anti-apoptotic effect of CCh was mediated by M3 receptors, blocked by Gq/11 antagonist YM254890 and PKC inhibitor Go 6983, impaired by inhibition of ERK1/2 pathway, potentiated by overexpression of ERK2 and mimicked by ERK2-CA. Blockade of JNK activation enhanced the CCh anti-apoptotic response. IFN-ß inhibited JNK activation and up-regulated CCh-induced ERK1/2 signalling. In hippocampal neurons, Oxo-M reduced IFN-ß-induced apoptosis; this effect was antagonized by blockade of M1 /M3 receptors and ERK1/2. CONCLUSIONS AND IMPLICATIONS: Stimulation of mAChRs counteracted IFN-ß-induced neuronal apoptosis through the activation of ERK1/2 signalling. The data indicate that activation of ERK1/2-coupled mAChRs may be an effective strategy for preventing IFNs neurotoxicity.


Assuntos
Apoptose , Interferon beta/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Receptores Muscarínicos/metabolismo , Animais , Ativação Enzimática , Humanos , Camundongos , Neurônios/citologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA