Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(21): e2209639120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186844

RESUMO

Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Traço Falciforme , Animais , Humanos , Camundongos , Carcinoma de Células Renais/patologia , Hipóxia/genética , Hipóxia/metabolismo , Rim/metabolismo , Neoplasias Renais/patologia , Traço Falciforme/genética , Traço Falciforme/metabolismo , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo
2.
Nat Commun ; 14(1): 2194, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069167

RESUMO

Mitochondria are hubs where bioenergetics, redox homeostasis, and anabolic metabolism pathways integrate through a tightly coordinated flux of metabolites. The contributions of mitochondrial metabolism to tumor growth and therapy resistance are evident, but drugs targeting mitochondrial metabolism have repeatedly failed in the clinic. Our study in pancreatic ductal adenocarcinoma (PDAC) finds that cellular and mitochondrial lipid composition influence cancer cell sensitivity to pharmacological inhibition of electron transport chain complex I. Profiling of patient-derived PDAC models revealed that monounsaturated fatty acids (MUFAs) and MUFA-linked ether phospholipids play a critical role in maintaining ROS homeostasis. We show that ether phospholipids support mitochondrial supercomplex assembly and ROS production; accordingly, blocking de novo ether phospholipid biosynthesis sensitized PDAC cells to complex I inhibition by inducing mitochondrial ROS and lipid peroxidation. These data identify ether phospholipids as a regulator of mitochondrial redox control that contributes to the sensitivity of PDAC cells to complex I inhibition.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Éteres Fosfolipídicos/metabolismo , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Homeostase
3.
Science ; 373(6561): eabj0486, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34529467

RESUMO

Inflammation is a major risk factor for pancreatic ductal adenocarcinoma (PDAC). When occurring in the context of pancreatitis, KRAS mutations accelerate tumor development in mouse models. We report that long after its complete resolution, a transient inflammatory event primes pancreatic epithelial cells to subsequent transformation by oncogenic KRAS. Upon recovery from acute inflammation, pancreatic epithelial cells display an enduring adaptive response associated with sustained transcriptional and epigenetic reprogramming. Such adaptation enables the reactivation of acinar-to-ductal metaplasia (ADM) upon subsequent inflammatory events, thereby limiting tissue damage through a rapid decrease of zymogen production. We propose that because activating mutations of KRAS maintain an irreversible ADM, they may be beneficial and under strong positive selection in the context of recurrent pancreatitis.


Assuntos
Células Acinares/patologia , Carcinogênese , Carcinoma Ductal Pancreático/patologia , Genes ras , Pâncreas/patologia , Pancreatite/fisiopatologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/fisiopatologia , Transformação Celular Neoplásica , Células Cultivadas , Reprogramação Celular , Cromatina/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Precursores Enzimáticos/metabolismo , Epigênese Genética , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Feminino , Sistema de Sinalização das MAP Quinases , Masculino , Metaplasia , Camundongos , Mutação , Pâncreas/metabolismo , Pancreatite/genética , Pancreatite/imunologia , Esferoides Celulares , Transcriptoma
4.
Nat Commun ; 12(1): 4626, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330913

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clinically challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a critical dependency required for PDAC maintenance. Genetic and pharmacological studies validate the role of PRMT1 in maintaining PDAC growth. Mechanistically, using proteomic and transcriptomic analyses, we demonstrate that global inhibition of asymmetric arginine methylation impairs RNA metabolism, which includes RNA splicing, alternative polyadenylation, and transcription termination. This triggers a robust downregulation of multiple pathways involved in the DNA damage response, thereby promoting genomic instability and inhibiting tumor growth. Taken together, our data support PRMT1 as a compelling target in PDAC and informs a mechanism-based translational strategy for future therapeutic development.Statement of significancePDAC is a highly lethal cancer with limited therapeutic options. This study identified and characterized PRMT1-dependent regulation of RNA metabolism and coordination of key cellular processes required for PDAC tumor growth, defining a mechanism-based translational hypothesis for PRMT1 inhibitors.


Assuntos
Carcinoma Ductal Pancreático/genética , Dano ao DNA , Neoplasias Pancreáticas/genética , Proteína-Arginina N-Metiltransferases/genética , RNA/genética , Proteínas Repressoras/genética , Animais , Biocatálise/efeitos dos fármacos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/prevenção & controle , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/prevenção & controle , Proteína-Arginina N-Metiltransferases/metabolismo , RNA/metabolismo , Interferência de RNA , Proteínas Repressoras/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Cancer Discov ; 11(11): 2904-2923, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34039636

RESUMO

Glioblastoma (GBM) is highly resistant to chemotherapies, immune-based therapies, and targeted inhibitors. To identify novel drug targets, we screened orthotopically implanted, patient-derived glioblastoma sphere-forming cells using an RNAi library to probe essential tumor cell metabolic programs. This identified high dependence on mitochondrial fatty acid metabolism. We focused on medium-chain acyl-CoA dehydrogenase (MCAD), which oxidizes medium-chain fatty acids (MCFA), due to its consistently high score and high expression among models and upregulation in GBM compared with normal brain. Beyond the expected energetics impairment, MCAD depletion in primary GBM models induced an irreversible cascade of detrimental metabolic effects characterized by accumulation of unmetabolized MCFAs, which induced lipid peroxidation and oxidative stress, irreversible mitochondrial damage, and apoptosis. Our data uncover a novel protective role for MCAD to clear lipid molecules that may cause lethal cell damage, suggesting that therapeutic targeting of MCFA catabolism may exploit a key metabolic feature of GBM. SIGNIFICANCE: MCAD exerts a protective role to prevent accumulation of toxic metabolic by-products in glioma cells, actively catabolizing lipid species that would otherwise affect mitochondrial integrity and induce cell death. This work represents a first demonstration of a nonenergetic role for dependence on fatty acid metabolism in cancer.This article is highlighted in the In This Issue feature, p. 2659.


Assuntos
Acil-CoA Desidrogenase , Glioblastoma , Peroxidação de Lipídeos , Mitocôndrias , Acil-CoA Desidrogenase/metabolismo , Apoptose , Ácidos Graxos/metabolismo , Glioblastoma/enzimologia , Glioblastoma/genética , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo
6.
Gastroenterology ; 161(1): 196-210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33745946

RESUMO

BACKGROUND & AIMS: Understanding the mechanisms by which tumors adapt to therapy is critical for developing effective combination therapeutic approaches to improve clinical outcomes for patients with cancer. METHODS: To identify promising and clinically actionable targets for managing colorectal cancer (CRC), we conducted a patient-centered functional genomics platform that includes approximately 200 genes and paired this with a high-throughput drug screen that includes 262 compounds in four patient-derived xenografts (PDXs) from patients with CRC. RESULTS: Both screening methods identified exportin 1 (XPO1) inhibitors as drivers of DNA damage-induced lethality in CRC. Molecular characterization of the cellular response to XPO1 inhibition uncovered an adaptive mechanism that limited the duration of response in TP53-mutated, but not in TP53-wild-type CRC models. Comprehensive proteomic and transcriptomic characterization revealed that the ATM/ATR-CHK1/2 axes were selectively engaged in TP53-mutant CRC cells upon XPO1 inhibitor treatment and that this response was required for adapting to therapy and escaping cell death. Administration of KPT-8602, an XPO1 inhibitor, followed by AZD-6738, an ATR inhibitor, resulted in dramatic antitumor effects and prolonged survival in TP53-mutant models of CRC. CONCLUSIONS: Our findings anticipate tremendous therapeutic benefit and support the further evaluation of XPO1 inhibitors, especially in combination with DNA damage checkpoint inhibitors, to elicit an enduring clinical response in patients with CRC harboring TP53 mutations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Biomarcadores Tumorais/genética , Neoplasias Colorretais/tratamento farmacológico , Carioferinas/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Células HCT116 , Células HT29 , Humanos , Indóis/administração & dosagem , Carioferinas/metabolismo , Camundongos , Morfolinas/administração & dosagem , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Receptores Citoplasmáticos e Nucleares/metabolismo , Sulfonamidas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
7.
Cancer Res ; 81(2): 332-343, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33158812

RESUMO

Cellular dedifferentiation is a key mechanism driving cancer progression. Acquisition of mesenchymal features has been associated with drug resistance, poor prognosis, and disease relapse in many tumor types. Therefore, successful targeting of tumors harboring these characteristics is a priority in oncology practice. The SWItch/Sucrose non-fermentable (SWI/SNF) chromatin remodeling complex has also emerged as a critical player in tumor progression, leading to the identification of several SWI/SNF complex genes as potential disease biomarkers and targets of anticancer therapies. AT-rich interaction domain-containing protein 1A (ARID1A) is a component of SWI/SNF, and mutations in ARID1A represent one of the most frequent molecular alterations in human cancers. ARID1A mutations occur in approximately 10% of pancreatic ductal adenocarcinomas (PDAC), but whether these mutations confer a therapeutic opportunity remains unclear. Here, we demonstrate that loss of ARID1A promotes an epithelial-mesenchymal transition (EMT) phenotype and sensitizes PDAC cells to a clinical inhibitor of HSP90, NVP-AUY922, both in vitro and in vivo. Although loss of ARID1A alone did not significantly affect proliferative potential or rate of apoptosis, ARID1A-deficient cells were sensitized to HSP90 inhibition, potentially by promoting the degradation of intermediate filaments driving EMT, resulting in cell death. Our results describe a mechanistic link between ARID1A defects and a quasi-mesenchymal phenotype, suggesting that deleterious mutations in ARID1A associated with protein loss exhibit potential as a biomarker for patients with PDAC who may benefit by HSP90-targeting drugs treatment. SIGNIFICANCE: This study identifies ARID1A loss as a promising biomarker for the identification of PDAC tumors that are potentially responsive to treatment with proteotoxic agents.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Resorcinóis/farmacologia , Fatores de Transcrição/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Prognóstico , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancers (Basel) ; 11(10)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623133

RESUMO

Tumor functional heterogeneity has been recognized for decades, and technological advancements are fueling renewed interest in uncovering the cell-intrinsic and extrinsic factors that influence tumor development and therapeutic response. Intratumoral heterogeneity is now arguably one of the most-studied topics in tumor biology, leading to the discovery of new paradigms and reinterpretation of old ones, as we aim to understand the profound implications that genomic, epigenomic, and functional heterogeneity hold with regard to clinical outcomes. In spite of our improved understanding of the biological complexity of cancer, characterization of tumor metabolic heterogeneity has lagged behind, lost in a century-old controversy debating whether glycolysis or mitochondrial respiration is more influential. But is tumor metabolism really so simple? Here, we review historical and current views of intratumoral heterogeneity, with an emphasis on summarizing the emerging data that begin to illuminate just how vast the spectrum of metabolic strategies a tumor can employ may be, and what this means for how we might interpret other tumor characteristics, such as mutational landscape, contribution of microenvironmental influences, and treatment resistance.

10.
Cancers (Basel) ; 11(9)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500168

RESUMO

Our poor understanding of the intricate biology of cancer and the limited availability of preclinical models that faithfully recapitulate the complexity of tumors are primary contributors to the high failure rate of novel therapeutics in oncology clinical studies. To address this need, patient-derived xenograft (PDX) platforms have been widely deployed and have reached a point of development where we can critically review their utility to model and interrogate relevant clinical scenarios, including tumor heterogeneity and clonal evolution, contributions of the tumor microenvironment, identification of novel drugs and biomarkers, and mechanisms of drug resistance. Colorectal cancer (CRC) constitutes a unique case to illustrate clinical perspectives revealed by PDX studies, as they overcome limitations intrinsic to conventional ex vivo models. Furthermore, the success of molecularly annotated "Avatar" models for co-clinical trials in other diseases suggests that this approach may provide an additional opportunity to improve clinical decisions, including opportunities for precision targeted therapeutics, for patients with CRC in real time. Although critical weaknesses have been identified with regard to the ability of PDX models to predict clinical outcomes, for now, they are certainly the model of choice for preclinical studies in CRC. Ongoing multi-institutional efforts to develop and share large-scale, well-annotated PDX resources aim to maximize their translational potential. This review comprehensively surveys the current status of PDX models in translational CRC research and discusses the opportunities and considerations for future PDX development.

11.
Nature ; 568(7752): 410-414, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30918400

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains recalcitrant to all forms of cancer treatment and carries a five-year survival rate of only 8%1. Inhibition of oncogenic KRAS (hereafter KRAS*), the earliest lesion in disease development that is present in more than 90% of PDACs, and its signalling surrogates has yielded encouraging preclinical results with experimental agents2-4. However, KRAS*-independent disease recurrence following genetic extinction of Kras* in mouse models anticipates the need for co-extinction strategies5,6. Multiple oncogenic processes are initiated at the cell surface, where KRAS* physically and functionally interacts to direct signalling that is essential for malignant transformation and tumour maintenance. Insights into the complexity of the functional cell-surface-protein repertoire (surfaceome) have been technologically limited until recently and-in the case of PDAC-the genetic control of the function and composition of the PDAC surfaceome in the context of KRAS* signalling remains largely unknown. Here we develop an unbiased, functional target-discovery platform to query KRAS*-dependent changes of the PDAC surfaceome, which reveals syndecan 1 (SDC1, also known as CD138) as a protein that is upregulated at the cell surface by KRAS*. Localization of SDC1 at the cell surface-where it regulates macropinocytosis, an essential metabolic pathway that fuels PDAC cell growth-is essential for disease maintenance and progression. Thus, our study forges a mechanistic link between KRAS* signalling and a targetable molecule driving nutrient salvage pathways in PDAC and validates oncogene-driven surfaceome annotation as a strategy to identify cancer-specific vulnerabilities.


Assuntos
Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Pinocitose , Sindecana-1/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Progressão da Doença , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Masculino , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais
12.
Mol Cell ; 60(6): 860-72, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26669261

RESUMO

Complex genomic rearrangements (CGRs) are a hallmark of many human diseases. Recently, CGRs were suggested to result from microhomology-mediated break-induced replication (MMBIR), a replicative mechanism involving template switching at positions of microhomology. Currently, the cause of MMBIR and the proteins mediating this process remain unknown. Here, we demonstrate in yeast that a collapse of homology-driven break-induced replication (BIR) caused by defective repair DNA synthesis in the absence of Pif1 helicase leads to template switches involving 0-6 nt of homology, followed by resolution of recombination intermediates into chromosomal rearrangements. Importantly, we show that these microhomology-mediated template switches, indicative of MMBIR, are driven by translesion synthesis (TLS) polymerases Polζ and Rev1. Thus, an interruption of BIR involving fully homologous chromosomes in yeast triggers a switch to MMBIR catalyzed by TLS polymerases. Overall, our study provides important mechanistic insights into the initiation of MMBIR associated with genomic rearrangements, similar to those promoting diseases in humans.


Assuntos
Aberrações Cromossômicas , Quebras de DNA de Cadeia Simples , Nucleotidiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos , DNA Helicases/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Genes Fúngicos , Humanos , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência
13.
Cancer Res ; 75(6): 1091-101, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25736685

RESUMO

Mutated KRAS (KRAS*) is a fundamental driver in the majority of pancreatic ductal adenocarcinomas (PDAC). Using an inducible mouse model of KRAS*-driven PDAC, we compared KRAS* genetic extinction with pharmacologic inhibition of MEK1 in tumor spheres and in vivo. KRAS* ablation blocked proliferation and induced apoptosis, whereas MEK1 inhibition exerted cytostatic effects. Proteomic analysis evidenced that MEK1 inhibition was accompanied by a sustained activation of the PI3K-AKT-MTOR pathway and by the activation of AXL, PDGFRa, and HER1-2 receptor tyrosine kinases (RTK) expressed in a large proportion of human PDAC samples analyzed. Although single inhibition of each RTK alone or plus MEK1 inhibitors was ineffective, a combination of inhibitors targeting all three coactivated RTKs and MEK1 was needed to inhibit proliferation and induce apoptosis in both mouse and human low-passage PDAC cultures. Importantly, constitutive AKT activation, which may mimic the fraction of AKT2-amplified PDAC, was able to bypass the induction of apoptosis caused by KRAS* ablation, highlighting a potential inherent resistance mechanism that may inform the clinical application of MEK inhibitor therapy. This study suggests that combinatorial-targeted therapies for pancreatic cancer must be informed by the activation state of each putative driver in a given treatment context. In addition, our work may offer explanative and predictive power in understanding why inhibitors of EGFR signaling fail in PDAC treatment and how drug resistance mechanisms may arise in strategies to directly target KRAS.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia
14.
Nature ; 514(7524): 628-32, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25119024

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D), herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Autofagia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Genes p53/genética , Glicólise , Lisossomos/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mutação/genética , Recidiva Local de Neoplasia/prevenção & controle , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Recidiva , Transdução de Sinais , Neoplasias Pancreáticas
15.
Chromosoma ; 121(2): 131-51, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22249206

RESUMO

Inefficient and inaccurate repair of DNA damage is the principal cause of DNA mutations, chromosomal aberrations, and carcinogenesis. Numerous multiple-step DNA repair pathways exist whose deployment depends on the nature of the DNA lesion. Common to all eukaryotic DNA repair pathways is the need to unravel the compacted chromatin structure to facilitate access of the repair machinery to the DNA and restoration of the original chromatin state afterward. Accordingly, our cells utilize a plethora of coordinated mechanisms to locally open up the chromatin structure to reveal the underlying DNA sequence and to orchestrate the efficient and accurate repair of DNA lesions. Here we review changes to the chromatin structure that are intrinsic to the DNA damage response and the available mechanistic insight into how these chromatin changes facilitate distinct stages of the DNA damage repair pathways to maintain genomic stability.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Epigênese Genética/genética , Instabilidade Genômica/genética , Histonas/metabolismo , Modelos Biológicos , Montagem e Desmontagem da Cromatina/genética
16.
Plant J ; 50(5): 839-47, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17425716

RESUMO

In plants, prenylated proteins are involved in actin organization, calcium-mediated signal transduction, and many other biological processes. Arabidopsis thaliana mutants lacking functional protein prenyltransferase genes have also revealed roles for prenylated proteins in phytohormone signaling and meristem development. However, to date, the turnover of prenylated plant proteins and the fate of the prenylcysteine (PC) residue have not been described. We have detected an enzyme activity in Arabidopsis plants that metabolizes farnesylcysteine (FC) to farnesal, which is subsequently reduced to farnesol. Unlike its mammalian ortholog, Arabidopsis FC lyase exhibits specificity for FC over geranylgeranylcysteine (GGC), and recognizes N-acetyl-FC (AFC). FC lyase is encoded by a gene on chromosome 5 of the Arabidopsis genome (FCLY, At5g63910) and is ubiquitously expressed in Arabidopsis tissues and organs. Furthermore, T-DNA insertions into the FCLY gene cause significant decreases in FC lyase activity and an enhanced response to abscisic acid (ABA) in seed germination assays. The effects of FCLY mutations on ABA sensitivity are even greater in the presence of exogenous FC. These data suggest that plants possess a specific FC detoxification and recycling pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Liases de Carbono-Enxofre/metabolismo , Cisteína/análogos & derivados , Cisteína/metabolismo , Farneseno Álcool/metabolismo , Proteínas Metiltransferases/genética , Sequência de Aminoácidos , Arabidopsis/metabolismo , DNA de Plantas/genética , Inativação Metabólica , Cinética , Dados de Sequência Molecular , Proteínas Metiltransferases/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
17.
Gene ; 380(2): 159-66, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16870359

RESUMO

Prenylated proteins undergo a series of post-translational modifications, including prenylation, proteolysis, and methylation. Collectively, these modifications generate a prenylcysteine methylester at the carboxyl terminus and modulate protein targeting and function. Prenylcysteine methylation is the only reversible step in this series of modifications. However, prenylcysteine alpha-carboxyl methylesterase (PCME) activity has not been described in plants. We have detected a specific PCME activity in Arabidopsis thaliana membranes that discriminates between biologically relevant and irrelevant prenylcysteine methylester substrates. Furthermore, we have identified an Arabidopsis gene (At5g15860) that encodes measurable PCME activity in recombinant yeast cells with greater specificity for biologically relevant prenylcysteine methylesters than the activity found in Arabidopsis membranes. These results suggest that specific and non-specific esterases catalyze the demethylation of prenylcysteine methylesters in Arabidopsis membranes. Our findings are discussed in the context of prenylcysteine methylation/demethylation as a potential regulatory mechanism for membrane association and function of prenylated proteins in Arabidopsis.


Assuntos
Arabidopsis/enzimologia , Hidrolases de Éster Carboxílico/isolamento & purificação , Esterases/fisiologia , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Membrana Celular/enzimologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Metanol/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas Metiltransferases/metabolismo , Prenilação de Proteína/fisiologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA