Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 335, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264011

RESUMO

Despite exponential growth in ecological data availability, broader interoperability amongst datasets is needed to unlock the potential of open access. Our understanding of the interface of demography and functional traits is well-positioned to benefit from such interoperability. Here, we introduce MOSAIC, an open-access trait database that unlocks the demographic potential stored in the COMADRE, COMPADRE, and PADRINO open-access databases. MOSAIC data were digitised and curated through a combination of existing datasets and new trait records sourced from primary literature. In its first release, MOSAIC (v. 1.0.0) includes 14 trait fields for 300 animal and plant species: biomass, height, growth determination, regeneration, sexual dimorphism, mating system, hermaphrodism, sequential hermaphrodism, dispersal capacity, type of dispersal, mode of dispersal, dispersal classes, volancy, and aquatic habitat dependency. MOSAIC includes species-level phylogenies for 1,359 species and population-specific climate data. We identify how database integration can improve our understanding of traits well-quantified in existing repositories and those that are poorly quantified (e.g., growth determination, modularity). MOSAIC highlights emerging challenges associated with standardising databases and demographic measures.


Assuntos
Ecossistema , Plantas , Animais , Clima , Conservação dos Recursos Naturais , Filogenia
2.
J Gerontol A Biol Sci Med Sci ; 78(7): 1116-1124, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37078879

RESUMO

The world's human population is reaching record longevities. Consequently, our societies are experiencing the impacts of prolonged longevity, such as increased retirement age. A major hypothesized influence on aging patterns is resource limitation, formalized under calorie restriction (CR) theory. This theory predicts extended organismal longevity due to reduced calorie intake without malnutrition. However, several challenges face current CR research and, although several attempts have been made to overcome these challenges, there is still a lack of holistic understanding of how CR shapes organismal vitality. Here, we conduct a literature review of 224 CR peer-reviewed publications to summarize the state-of-the-art in the field. Using this summary, we highlight the challenges of CR research in our understanding of its impacts on longevity. We demonstrate that experimental research is biased toward short-lived species (98.2% of studies examine species with <5 years of mean life expectancy) and lacks realism in key areas, such as stochastic environments or interactions with other environmental drivers (eg, temperature). We argue that only by considering a range of short- and long-lived species and taking more realistic approaches, can CR impacts on longevity be examined and validated in natural settings. We conclude by proposing experimental designs and study species that will allow the discipline to gain much-needed understanding of how restricting caloric intake affects long-lived species in realistic settings. Through incorporating more experimental realism, we anticipate crucial insights that will ultimately shape the myriad of sociobioeconomic impacts of senescence in humans and other species across the Tree of Life.


Assuntos
Envelhecimento , Fome , Humanos , Longevidade , Expectativa de Vida , Ingestão de Energia , Restrição Calórica
3.
Exp Appl Acarol ; 87(2-3): 143-162, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35939243

RESUMO

Biological pest control is becoming increasingly important for sustainable agriculture. Although many species of natural enemies are already being used commercially, efficient biological control of various pests is still lacking, and there is a need for more biocontrol agents. In this review, we focus on predatory soil mites, their role as natural enemies, and their biocontrol potential, mainly in vegetable and ornamental crops, with an emphasis on greenhouse systems. These predators are still underrepresented in biological control, but have several advantages compared to predators living on above-ground plant parts. For example, predatory soil mites are often easy and affordable to mass rear, as most of them are generalist predators, which also means that they may be used against various pests and can survive periods of pest scarcity by feeding on alternative prey or food. Many of them can also endure unfavourable conditions, making it easier for them to establish in various crops. Based on the current literature, we show that they have potential to control a variety of pests, both in greenhouses and in the field. However, more research is needed to fully understand and appreciate their potential as biocontrol agents. We review and discuss several methods to increase their efficiency, such as supplying them with alternative food and changing soil/litter structure to enable persistence of their populations. We conclude that predatory soil mites deserve more attention in future studies to increase their application in agricultural crops.


Assuntos
Ácaros , Agricultura , Animais , Controle Biológico de Vetores , Comportamento Predatório , Solo
5.
Ecol Modell ; 366: 37-47, 2017 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31007343

RESUMO

Individuals that disperse from one habitat to another has consequences for individual fitness, population dynamics and gene flow. The fitness benefits accrued in the new habitat are traded off against costs associated with dispersal. Most studies focus on costs at settlement and effects on settlement populations; the influence of dispersal to natal populations is assessed by monitoring change in numbers due to emigration. However, the extent to which natal populations are affected when individuals that invest in dispersal fail to disperse/emigrate is unclear. Here, we use an Integral Projection Model (IPM) to assess how developing into a disperser affects natal population structure and growth. We do so using the bulb mite (Rhizoglyphus robini) as a study system. Bulb mites, in unfavourable environments, develop into a dispersal (deutonymph) stage during ontogeny; these individuals are called dispersers with individuals not developing into this stage called non-dispersers. We varied disperser expression and parameterised IPMs to describe three simulations of successful and unsuccessful dispersal: (i) 'no dispersal' - dispersal stage is excluded and demographic data are from non-disperser individuals; (ii) 'false dispersal' - dispersal stage included and demographic data from non-disperser individuals are used; (iii) 'true dispersal' - dispersal stage included and demographic data are from individuals that go through the dispersal stage and from non-disperser individuals. We found that the type of dispersal simulation (no dispersal < false dispersal < true dispersal) and disperser expression increases generation time and reduces lifetime reproductive success and population growth rate. Our findings show that disperser individuals that fail to leave, can change the structure and growth of natal populations.

6.
PLoS One ; 10(9): e0136872, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26325395

RESUMO

Life history traits play an important role in population dynamics and correlate, both positively and negatively, with dispersal in a wide range of taxa. Most invertebrate studies on trade-offs between life history traits and dispersal have focused on dispersal via flight, yet much less is known about how life history trade-offs influence species that disperse by other means. In this study, we identify effects of investing in dispersal morphology (dispersal expression) on life history traits in the male dimorphic bulb mite (Rhizoglyphus robini). This species has a facultative juvenile life stage (deutonymph) during which individuals can disperse by phoresy. Further, adult males are either fighters (which kill other mites) or benign scramblers. Here, in an experiment, we investigate the effects of investing in dispersal on size at maturity, sex and male morph ratio, and female lifetime reproductive success. We show that life history traits correlate negatively with the expression of the dispersal stage. Remarkably, all males that expressed the dispersal life stage developed into competitive fighters and none into scramblers. This suggests that alternative, male reproductive strategies and dispersal should not be viewed in isolation but considered concurrently.


Assuntos
Acaridae/fisiologia , Estágios do Ciclo de Vida/fisiologia , Animais , Feminino , Masculino , Ácaros , Fenótipo , Dinâmica Populacional , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia
7.
Am Nat ; 183(6): 784-97, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24823822

RESUMO

Global change alters the environment, including increases in the frequency of (un)favorable events and shifts in environmental noise color. However, how these changes impact the dynamics of populations, and whether these can be predicted accurately has been largely unexamined. Here we combine recently developed population modeling approaches and theory in stochastic demography to explore how life history, morphology, and average fitness respond to changes in the frequency of favorable environmental conditions and in the color of environmental noise in a model organism (an acarid mite). We predict that different life-history variables respond correlatively to changes in the environment, and we identify different life-history variables, including lifetime reproductive success, as indicators of average fitness and life-history speed across stochastic environments. Depending on the shape of adult survival rate, generation time can be used as an indicator of the response of populations to stochastic change, as in the deterministic case. This work is a useful step toward understanding population dynamics in stochastic environments, including how stochastic change may shape the evolution of life histories.


Assuntos
Estágios do Ciclo de Vida , Dinâmica Populacional , Reprodução/fisiologia , Animais , Mudança Climática , Meio Ambiente , Ácaros , Modelos Biológicos
8.
Exp Appl Acarol ; 62(4): 425-36, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24248909

RESUMO

Alternative reproductive phenotypes (ARPs) represent discrete morphological variation within a single sex; as such ARPs are an excellent study system to investigate the maintenance of phenotypic variation. ARPs are traditionally modelled as a mixture of pure strategies or as a conditional strategy. Most male dimorphisms are controlled by a conditional strategy, where males develop into a particular phenotype as a result of their condition which allows them to reach a certain threshold. Individuals that are unable to reach the threshold of a conditional strategy are considered to 'make the best of a bad job'; however, these individuals can have their own fitness merits. Given these fitness merits, condition-dependent selection alone is not sufficient to maintain a conditionally determined male dimorphism and other mechanisms, most likely frequency-dependent selection, are required. We studied in an experiment, the male dimorphic bulb mite Rhizoglyphus robini-where males are fighters that can kill other males or benign scramblers-to assess the strength of frequency-dependent survival in a high and low-quality environment. We found that male survival was frequency-dependent in the high-quality environment but not the low-quality environment. In the high-quality environment the survival curves of the two morphs crossed but the direction of frequency-dependence was opposite to what theory predicts.


Assuntos
Ácaros/fisiologia , Comportamento Sexual Animal , Animais , Masculino , Ácaros/anatomia & histologia , Modelos Biológicos , Fenótipo , Dinâmica Populacional
9.
Physiol Biochem Zool ; 82(5): 495-503, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19624273

RESUMO

Abstract The evolution of metabolic rate-temperature (MR-T) reaction norms is of fundamental importance to physiological ecology. Metabolic cold adaptation (MCA) predicts that populations or species from cooler environments will have either a higher metabolic rate at a common temperature or steeper MR-T relationships, indicating greater sensitivity of respiratory metabolism to temperature. Support for MCA has been found in some insect species by comparing species or populations differing in latitude. However, the generality of these findings are contentious, with most studies either unable to account for phenotypic plasticity or the evolutionary relatedness of species or populations. Hence, the importance of MCA is vigorously debated from both evolutionary and ecological perspectives. Furthermore, few species, particularly from tropical environments, have been shown to differ in MR-T sensitivity along altitudinal temperature gradients. Here, using four populations of tsetse flies (Glossina pallidipes, Diptera: Glossinidae) from thermally distinct geographic regions, we test the hypothesis that there is evolved variation in MR-T relationships to cold climates. We found that a high-altitude equatorial population from a cool habitat has a steeper MR-T reaction norm. By contrast, other populations from warmer environments in East Africa do not differ with respect to their MR-T reaction norms. Squared-change parsimony analyses, based on the combined mitochondrial 16S rDNA ribosomal subunit and cytochrome c oxidase subunit I (COI), support the hypothesis of adaptive differentiation of MR-T reaction norms in the cool-climate population. Seasonal adjustments or laboratory-temperature-induced phenotypic plasticity changed the intercept of the reaction norm rather than the slope, and thus the observed intraspecific variation in slopes of MR-T reaction norms could not be accounted for by phenotypic plasticity. These results therefore suggest evolutionary adaptation of MR-T reaction norms to cool climates (<22 degrees C) in tsetse and provide novel support for MCA within an insect species.


Assuntos
Moscas Tsé-Tsé/genética , Moscas Tsé-Tsé/metabolismo , Aclimatação/genética , Animais , Evolução Biológica , Clima , Genes de Insetos , Genes Mitocondriais , Quênia , Modelos Biológicos , Filogenia , Especificidade da Espécie , Temperatura , Moscas Tsé-Tsé/classificação , Zâmbia
10.
J Insect Physiol ; 54(1): 114-27, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17889900

RESUMO

For tsetse (Glossina spp.), the vectors of human and animal trypanosomiases, the physiological mechanisms linking variation in population dynamics with changing weather conditions have not been well established. Here, we investigate high- and low-temperature tolerance in terms of activity limits and survival in a natural population of adult Glossina pallidipes from eastern Zambia. Due to increased interest in chilling flies for handling and aerial dispersal in sterile insect technique control and eradication programmes, we also provide further detailed investigation of low-temperature responses. In wild-caught G. pallidipes, the probability of survival for 50% of the population at low-temperatures was at 3.7, 8.9 and 9.6 degrees C (95% CIs: +/-1.5 degrees C) for 1, 2 and 3 h treatments, respectively. At high temperatures, it was estimated that treatments at 37.9, 36.2 and 35.6 degrees C (95% CIs: +/-0.5 degrees C) would yield 50% population survival for 1, 2 and 3 h, respectively. Significant effects of time and temperature were detected at both temperature extremes (GLZ, p<0.05 in all cases) although a time-temperature interaction was only detected at high temperatures (p<0.0001). We synthesized data from four other Kenyan populations and found that upper critical thermal limits showed little variation among populations and laboratory treatments (range: 43.9-45.0 degrees C; 0.25 degrees C/min heating rate), although reduction to more ecologically relevant heating rates (0.06 degrees C/min) reduce these values significantly from approximately 44.4 to 40.6 degrees C, thereby providing a causal explanation for why tsetse distribution may be high-temperature limited. By contrast, low-temperature limits showed substantial variation among populations and acclimation treatments (range: 4.5-13.8 degrees C; 0.25 degrees C/min), indicating high levels of inter-population variability. Ecologically relevant cooling rates (0.06 degrees C/min) suggest tsetses are likely to experience chill coma temperatures under natural conditions (approximately 20-21 degrees C). The results from acute hardening experiments in the Zambian population demonstrate limited ability to improve low-temperature tolerance over short (hourly) timescales after non-lethal pre-treatments. In flies which survived chilling, recovery times were non-linear with plateaus between 2-6 and 8-12 degrees C. Survival times ranged between 4 and 36 h and did not vary between flies which had undergone chill coma by comparison with flies which had not, even after factoring body condition into the analyses (p>0.5 in all cases). However, flies with low chill coma values had the highest body water and fat content, indicating that when energy reserves are depleted, low-temperature tolerance may be compromised. Overall, these results suggest that physiological mechanisms may provide insight into tsetse population dynamics, hence distribution and abundance, and support a general prediction for reduced geographic distribution under future climate warming scenarios.


Assuntos
Aclimatação/fisiologia , Clima , Efeito Estufa , Temperatura , Moscas Tsé-Tsé/fisiologia , Análise de Variância , Animais , Geografia , Quênia , Atividade Motora/fisiologia , Dinâmica Populacional , Análise de Sobrevida , Zâmbia
11.
Proc Biol Sci ; 274(1628): 2935-42, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17878142

RESUMO

A full-factorial study of the effects of rates of temperature change and start temperatures was undertaken for both upper and lower critical thermal limits (CTLs) using the tsetse fly, Glossina pallidipes. Results show that rates of temperature change and start temperatures have highly significant effects on CTLs, although the duration of the experiment also has a major effect. Contrary to a widely held expectation, slower rates of temperature change (i.e. longer experimental duration) resulted in poorer thermal tolerance at both high and low temperatures. Thus, across treatments, a negative relationship existed between duration and upper CTL while a positive relationship existed between duration and lower CTL. Most importantly, for predicting tsetse distribution, G. pallidipes suffer loss of function at less severe temperatures under the most ecologically relevant experimental conditions for upper (0.06 degrees C min(-1); 35 degrees C start temperature) and lower CTL (0.06 degrees C min(-1); 24 degrees C start temperature). This suggests that the functional thermal range of G. pallidipes in the wild may be much narrower than previously suspected, approximately 20-40 degrees C, and highlights their sensitivity to even moderate temperature variation. These effects are explained by limited plasticity of CTLs in this species over short time scales. The results of the present study have broad implications for understanding temperature tolerance in these and other terrestrial arthropods.


Assuntos
Aclimatação , Regulação da Temperatura Corporal , Temperatura , Moscas Tsé-Tsé/fisiologia , Animais , Fatores de Tempo
12.
Am Nat ; 168(5): 630-44, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17080362

RESUMO

The beneficial acclimation hypothesis (BAH) is controversial. While physiological work all but assumes that the BAH is true, recent studies have shown that support for the BAH is typically wanting. The latter have been criticized for assessing the benefits of developmental plasticity rather than acclimation. Here we examine the BAH within a strong inference framework for five congeneric species of ameronothroid oribatid mites that occupy marine to terrestrial habitats. We do so by assessing responses of maximum speed, optimum temperature, and performance breadth, measured from -10 degrees C to 35 degrees C, to four treatment temperatures (0 degrees , 5 degrees , 10 degrees , and 15 degrees C). We show that the BAH and its alternatives often make similar empirical predictions. Weak beneficial acclimation is characteristic of one of the more marine species. In the other two upper-shore and marine species, evidence exists for deleterious acclimation and the colder-is-better hypothesis. In the two fully terrestrial species, there is no plasticity. Lack of plasticity is beneficial when cue reliability is low or costs of plasticity are high, and the former seems plausible in terrestrial habitats. However, weak plasticity in the upper-shore/marine species and the absence of plasticity in the terrestrial species might also be a consequence of phylogenetic constraint.


Assuntos
Aclimatação/fisiologia , Meio Ambiente , Locomoção/fisiologia , Ácaros/fisiologia , Modelos Biológicos , Animais , Ilhas Atlânticas , Filogenia , Especificidade da Espécie , Temperatura
13.
J Insect Physiol ; 52(7): 693-700, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16750541

RESUMO

The extent to which phenotypic plasticity might mediate short-term responses to environmental change is controversial. Nonetheless, theoretical work has made the prediction that plasticity should be common, especially in predictably variable environments by comparison with those that are either stable or unpredictable. Here we examine these predictions by comparing the phenotypic plasticity of thermal tolerances (supercooling point (SCP), lower lethal temperature (LLT), upper lethal temperature (ULT)), following acclimation at either 0, 5, 10 or 15 degrees C, for seven days, of five, closely-related ameronothroid mite species. These species occupy marine and terrestrial habitats, which differ in their predictability, on sub-Antarctic Marion Island. All of the species showed some evidence of pre-freeze mortality (SCPs -9 to -23 degrees C; LLTs -3 to -15 degrees C), though methodological effects might have contributed to the difference between the SCPs and LLTs, and the species are therefore considered moderately chill tolerant. ULTs varied between 36 degrees C and 41 degrees C. Acclimation effects on SCP and LLT were typically stronger in the marine than in the terrestrial species, in keeping with the prediction of strong acclimation responses in species from predictably variable environments, but weaker responses in species from unpredictable environments. The converse was found for ULT. These findings demonstrate that acclimation responses vary among traits in the same species. Moreover, they suggest that there is merit in assessing the predictability of changes in high and low environmental temperatures separately.


Assuntos
Aclimatação/fisiologia , Ácaros/fisiologia , Animais , Regiões Antárticas , Temperatura Alta , Ilhas do Oceano Índico , Microclima , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA