Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 88(6)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32284368

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of morbidity and mortality worldwide. To survive in both the environment and the host, P. aeruginosa must cope with redox stress. In P. aeruginosa, a primary mechanism for protection from redox stress is the antioxidant glutathione (GSH). GSH is a low-molecular-weight thiol-containing tripeptide (l-γ-glutamyl-l-cysteinyl-glycine) that can function as a reversible reducing agent. GSH plays an important role in P. aeruginosa physiology and is known to modulate several cellular and social processes that are likely important during infection. However, the role of GSH biosynthesis during mammalian infection is not well understood. In this study, we created a P. aeruginosa mutant defective in GSH biosynthesis to examine how loss of GSH biosynthesis affects P. aeruginosa virulence. We found that GSH is critical for normal growth in vitro and provides protection against hydrogen peroxide, bleach, and ciprofloxacin. We also studied the role of P. aeruginosa GSH biosynthesis in four mouse infection models, including the surgical wound, abscess, burn wound, and acute pneumonia models. We discovered that the GSH biosynthesis mutant was slightly less virulent in the acute pneumonia infection model but was equally virulent in the three other models. This work provides new and complementary data regarding the role of GSH in P. aeruginosa during mammalian infection.


Assuntos
Glutationa/biossíntese , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Infecções dos Tecidos Moles/microbiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desinfetantes/farmacologia , Farmacorresistência Bacteriana , Interações Hospedeiro-Patógeno , Humanos , Viabilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento
2.
Microorganisms ; 7(9)2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450542

RESUMO

Streptococcus pneumoniae is among the top causes of bacterial endophthalmitis, an infectious disease of the intraocular fluids. The mechanisms by which S. pneumoniae grows and thrives in the intraocular cavity are not well understood. We used a bacterial genome-wide assessment tool (transposon insertion site sequencing) to determine genes essential for S. pneumoniae growth in vitreous humor. The results indicated that an ascorbic acid (AA) transport system subunit was important for growth. We created an isogenic gene deletion mutant of the AA transcriptional activator, ulaR2, in 2 strains of S. pneumoniae. Growth curve analysis indicated that ulaR2 deletion caused attenuated growth in vitro for both strains. However, in vivo vitreous humor infection in rabbits with either strain determined that ulaR2 was necessary for growth in one strain but not the other. These results demonstrate that ulaR2 may be important for fitness during S. pneumoniae endophthalmitis depending on the background of the strain.

3.
Proc Natl Acad Sci U S A ; 115(22): E5125-E5134, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29760087

RESUMO

Laboratory experiments have uncovered many basic aspects of bacterial physiology and behavior. After the past century of mostly in vitro experiments, we now have detailed knowledge of bacterial behavior in standard laboratory conditions, but only a superficial understanding of bacterial functions and behaviors during human infection. It is well-known that the growth and behavior of bacteria are largely dictated by their environment, but how bacterial physiology differs in laboratory models compared with human infections is not known. To address this question, we compared the transcriptome of Pseudomonas aeruginosa during human infection to that of P. aeruginosa in a variety of laboratory conditions. Several pathways, including the bacterium's primary quorum sensing system, had significantly lower expression in human infections than in many laboratory conditions. On the other hand, multiple genes known to confer antibiotic resistance had substantially higher expression in human infection than in laboratory conditions, potentially explaining why antibiotic resistance assays in the clinical laboratory frequently underestimate resistance in patients. Using a standard machine learning technique known as support vector machines, we identified a set of genes whose expression reliably distinguished in vitro conditions from human infections. Finally, we used these support vector machines with binary classification to force P. aeruginosa mouse infection transcriptomes to be classified as human or in vitro. Determining what differentiates our current models from clinical infections is important to better understand bacterial infections and will be necessary to create model systems that more accurately capture the biology of infection.


Assuntos
Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transcriptoma/genética , Animais , Biofilmes , Fibrose Cística , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Genes Bacterianos , Humanos , Aprendizado de Máquina , Camundongos , Pseudomonas aeruginosa/isolamento & purificação , Percepção de Quorum/genética , Máquina de Vetores de Suporte , Infecção da Ferida Cirúrgica/metabolismo , Infecção da Ferida Cirúrgica/microbiologia
4.
Nat Chem ; 10(1): 45-50, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29256509

RESUMO

Naturally occurring peptides and proteins often use dynamic disulfide bonds to impart defined tertiary/quaternary structures for the formation of binding pockets with uniform size and function. Although peptide synthesis and modification are well established, controlling quaternary structure formation remains a significant challenge. Here, we report the facile incorporation of aryl aldehyde and acyl hydrazide functionalities into peptide oligomers via solid-phase copper-catalysed azide-alkyne cycloaddition (SP-CuAAC) click reactions. When mixed, these complementary functional groups rapidly react in aqueous media at neutral pH to form peptide-peptide intermolecular macrocycles with highly tunable ring sizes. Moreover, sequence-specific figure-of-eight, dumbbell-shaped, zipper-like and multi-loop quaternary structures were formed selectively. Controlling the proportions of reacting peptides with mismatched numbers of complementary reactive groups results in the formation of higher-molecular-weight sequence-defined ladder polymers. This also amplified antimicrobial effectiveness in select cases. This strategy represents a general approach to the creation of complex abiotic peptide quaternary structures.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Cíclicos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Aldeídos/síntese química , Alcinos/química , Sequência de Aminoácidos , Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Azidas/química , Química Click , Reação de Cicloadição , Hidrazinas/síntese química , Peptídeos Cíclicos/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Compostos de Amônio Quaternário/síntese química , Staphylococcus aureus/efeitos dos fármacos
5.
Nat Microbiol ; 2: 17079, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28555625

RESUMO

Identifying genes required by pathogens during infection is critical for antimicrobial development. Here, we use a Monte Carlo simulation-based method to analyse high-throughput transposon sequencing data to determine the role of infection site and co-infecting microorganisms on the in vivo 'essential' genome of Staphylococcus aureus. We discovered that co-infection of murine surgical wounds with Pseudomonas aeruginosa results in conversion of ∼25% of the in vivo S. aureus mono-culture essential genes to non-essential. Furthermore, 182 S. aureus genes are uniquely essential during co-infection. These 'community dependent essential' (CoDE) genes illustrate the importance of studying pathogen gene essentiality in polymicrobial communities.


Assuntos
Coinfecção/microbiologia , Genes Bacterianos , Genes Essenciais , Interações Microbianas , Pseudomonas aeruginosa/genética , Staphylococcus aureus/genética , Animais , Camundongos , Mutagênese Insercional , Pseudomonas aeruginosa/crescimento & desenvolvimento , Análise de Sequência de DNA , Staphylococcus aureus/crescimento & desenvolvimento , Infecção da Ferida Cirúrgica/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA