Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 75(6): 661-673, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33231488

RESUMO

Many medical devices contain metals that interface with the body. Additionally, embedded metal fragments from military wounds are typically not removed, to avoid the risk of morbidity associated with invasive surgery. The long-term health consequences of many of these materials are not thoroughly understood. To this end, we have exposed rats for up to one year to implanted single-element metal pellets of any one of Al, Co, Cu, Fe, Ni, Pb, Ta, or W. Various tissues were harvested and flash frozen for analysis of their metal distribution. We discuss approaches to most thoroughly and reliably evaluate the distribution of metal in these tissues. The path to the most appropriate analytical technique took us through extensive examination of the tissues using scanning electron microscopy with energy dispersive X-ray spectroscopy (XPS), X-ray photoelectron spectroscopy (XPS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Though any one of these methods is highly relied upon in surface chemistry analysis, LA-ICP-MS alone showed presence of metal in the tissue. This information will help build robust methods to bridge the gap in our understanding of biosolubility and distribution of embedded metal throughout the body.


Assuntos
Terapia a Laser , Metais , Animais , Microscopia Eletrônica de Varredura , Ratos , Análise Espectral
2.
Soft Matter ; 16(38): 8826-8831, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33026040

RESUMO

The fracture properties of very soft and/or brittle materials are challenging to measure directly due to the limitations of existing fracture testing methods. To address this issue, we introduce a razorblade-initiated fracture test (RIFT) to measure the mechanical properties related to fracture for soft polymeric gels. We use RIFT to quantify the elasticity, crack initiation energy, and the fracture energy of gellan hydrogels as a function of gellan concentration. Additionally, we use RIFT to study the role of friction in quantifying the fracture properties for poly(styrene-b-ethylene butadiene-b-styrene) gels as a function of test velocity. This new method provides a simple and efficient means to quantify the fracture properties of soft materials.

3.
Mol Pharm ; 17(2): 569-578, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31917583

RESUMO

Subvisible particle formation, which occurs after the sterile filtration step of the fill/finish process, is a challenge that may occur during the development of biotherapeutics with complex molecular structures. Here, we show that a stainless steel pump head from a rotary piston pump produces more protein aggregates, past the limit of the acceptable quality range for subvisible particle counts, in comparison to a ceramic pump head. The quartz crystal microbalance was used to quantify the primary layer, proteins irreversibly adsorbed at the solid-liquid interface, and the secondary diffuse gel-like layer interacting on top of the primary layer. The results showed that the mass of protein irreversibly adsorbed onto stainless steel sensors is greater than on an aluminum oxide surface (ceramic pump mimic). This suggests that the amount of adsorbed protein plays a role in surface-induced protein aggregation at the solid-liquid interface.


Assuntos
Anticorpos Monoclonais Humanizados/química , Composição de Medicamentos/métodos , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Aço Inoxidável/química , Fator de Necrose Tumoral alfa/química , Adsorção , Óxido de Alumínio/química , Anticorpos Monoclonais Humanizados/genética , Cerâmica/química , Estabilidade de Medicamentos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Agregados Proteicos , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície , Fator de Necrose Tumoral alfa/genética
4.
Langmuir ; 34(13): 4084-4094, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505260

RESUMO

This study examines how surfaces with different water contact angles (wettability) affect dry and underwater adhesion and friction. These studies were conducted by bringing a deformable hydrophobic poly(dimethylsiloxane) lens in contact with surfaces of gradient wettability. On the basis of our adhesion and friction results, we divide the results in three regions. In region I (water contact angles greater than 80°), the dry adhesion is lower than underwater adhesion. In contrast, in region III, (water contact angles less than 50°), the dry adhesion is higher than underwater adhesion. For surfaces with water contact angles between 50 and 80° (region II), the dry and wet adhesion values are comparable. Interestingly, in this region II, the underwater coefficient of friction (COF) values are higher than those in regions I and III. We have used surface-sensitive sum frequency generation (SFG) spectroscopy to probe whether the contact interface in static conditions and during dynamic sliding is dry or wet. The SFG results reveal that the contact is dry in region I. If this dry contact is maintained, the underwater COF follows the trend of adhesion hysteresis in dry conditions (adhesion hysteresis decreases with an increase in water contact angles). In region III, the contact is wet and the underwater COF follows the trend for adhesion hysteresis in wet conditions (adhesion hysteresis increases with an increase in water contact angles). By knowing whether the contact interfaces are dry or wet, we can relate the trends in COF with the trends in adhesion hysteresis. For conditions where the contact interfaces have both dry and wet patches (region II), the COF values are higher than those in completely dry conditions, suggesting that a partially lubricated system can exhibit a higher COF.

5.
J Pharm Sci ; 107(5): 1383-1391, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29277640

RESUMO

Nanoparticle tracking analysis (NTA) obtains particle size by analysis of particle diffusion through a time series of micrographs and particle count by a count of imaged particles. The number of observed particles imaged is controlled by the scattering cross-section of the particles and by camera settings such as sensitivity and shutter speed. Appropriate camera settings are defined as those that image, track, and analyze a sufficient number of particles for statistical repeatability. Here, we test if image attributes, features captured within the image itself, can provide measurable guidelines to assess the accuracy for particle size and count measurements using NTA. The results show that particle sizing is a robust process independent of image attributes for model systems. However, particle count is sensitive to camera settings. Using open-source software analysis, it was found that a median pixel area, 4 pixels2, results in a particle concentration within 20% of the expected value. The distribution of these illuminated pixel areas can also provide clues about the polydispersity of particle solutions prior to using a particle tracking analysis. Using the median pixel area serves as an operator-independent means to assess the quality of the NTA measurement for count.


Assuntos
Difusão Dinâmica da Luz/métodos , Nanopartículas/análise , Difusão , Processamento de Imagem Assistida por Computador/métodos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Software
6.
Sci Adv ; 2(8): e1600763, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27574706

RESUMO

The nature of interfacial water is critical in several natural processes, including the aggregation of lipids into the bilayer, protein folding, lubrication of synovial joints, and underwater gecko adhesion. The nanometer-thin water layer trapped between two surfaces has been identified to have properties that are very different from those of bulk water, but the molecular cause of such discrepancy is often undetermined. Using surface-sensitive sum frequency generation (SFG) spectroscopy, we discover a strongly coordinated water layer confined between two charged surfaces, formed by the adsorption of a cationic surfactant on the hydrophobic surfaces. By varying the adsorbed surfactant coverage and hence the surface charge density, we observe a progressively evolving water structure that minimizes the sliding friction only beyond the surfactant concentration needed for monolayer formation. At complete surfactant coverage, the strongly coordinated confined water results in hydration forces, sustains confinement and sliding pressures, and reduces dynamic friction. Observing SFG signals requires breakdown in centrosymmetry, and the SFG signal from two oppositely oriented surfactant monolayers cancels out due to symmetry. Surprisingly, we observe the SFG signal for the water confined between the two charged surfactant monolayers, suggesting that this interfacial water layer is noncentrosymmetric. The structure of molecules under confinement and its macroscopic manifestation on adhesion and friction have significance in many complicated interfacial processes prevalent in biology, chemistry, and engineering.


Assuntos
Engenharia , Gelo/análise , Propriedades de Superfície , Água/química , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Físicos , Pressão
7.
Langmuir ; 31(8): 2398-406, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25668056

RESUMO

The contact of two hydrophobic surfaces in water is of importance in biology, catalysis, material science, and geology. A tenet of hydrophobic attraction is the release of an ordered water layer, leading to a dry contact between two hydrophobic surfaces. Although the water-free contact has been inferred from numerous experimental and theoretical studies, this has not been directly measured. Here, we use surface sensitive sum frequency generation spectroscopy to directly probe the contact interface between hydrophobic poly(dimethylsiloxane) (PDMS) and two hydrophobic surfaces (a self-assembled monolayer, OTS, and a polymer coating, PVNODC). We show that the interfacial structures for OTS and PVNODC are identical in dry contact but that they differ dramatically in wet contact. In water, the PVNODC surface partially rearranges at grain boundaries, trapping water at the contact interface leading to a 50% reduction in adhesion energy compared to OTS-PDMS contact. The Young-Dupré equation, used extensively to calculate the thermodynamic work of adhesion, predicts no differences between the adhesion energy for these two hydrophobic surfaces, indicating a failure of this well-known equation when there is a heterogeneous contact. This study exemplifies the importance of interstitial water in controlling adhesion and wetting.


Assuntos
Dimetilpolisiloxanos/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície , Molhabilidade
8.
Biomacromolecules ; 16(1): 266-74, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25427310

RESUMO

Amino acid-based poly(ester urea) (PEU) copolymers functionalized with pendant catechol groups that address the need for strongly adhesive yet degradable biomaterials have been developed. Lap-shear tests with aluminum adherends demonstrated that these polymers have lap-shear adhesion strengths near 1 MPa. An increase in lap-shear adhesive strength to 2.4 MPa was achieved upon the addition of an oxidative cross-linker. The adhesive strength on porcine skin adherends was comparable with commercial fibrin glue. Interfacial energies of the polymeric materials were investigated via contact angle measurements and Johnson-Kendall-Roberts (JKR) technique. The JKR work of adhesion was consistent with contact angle measurements. The chemical and physical properties of PEUs can be controlled using different diols and amino acids, making the polymers candidates for the development of biological glues for use in clinical applications.


Assuntos
Materiais Biomiméticos/química , Bivalves/metabolismo , Catecóis/química , Poliuretanos/química , Aminoácidos/química , Animais , Bivalves/química , Teste de Materiais , Polímeros/química , Proteínas/química , Proteínas/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA