Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2): L022102, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491584

RESUMO

Stretched-exponential relaxation is a widely observed phenomenon found in ordered ferromagnets as well as glassy systems. One modeling approach connects this behavior to a droplet dynamics described by an effective Langevin equation for the droplet radius with an r^{2/3} potential. Here, we study a Brownian particle under the influence of a general confining, albeit weak, potential field that grows with distance as a sublinear power law. We find that for this memoryless model, observables display stretched-exponential relaxation. The probability density function of the system is studied using a rate-function ansatz. We obtain analytically the stretched-exponential exponent along with an anomalous power-law scaling of length with time. The rate function exhibits a point of nonanalyticity, indicating a dynamical phase transition. In particular, the rate function is double valued both to the left and right of this point, leading to four different rate functions, depending on the choice of initial conditions and symmetry.

2.
Phys Rev E ; 108(4-1): 044126, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978639

RESUMO

We consider a system formed by two different segments of particles, coupled to thermal baths, one at each end, modeled by Langevin thermostats. The particles in each segment interact harmonically and are subject to an on-site potential for which three different types are considered, namely, harmonic, ϕ^{4}, and Frenkel-Kontorova. The two segments are nonlinearly coupled, between interfacial particles, by means of a power-law potential with exponent µ, which we vary, scanning from subharmonic to superharmonic potentials, up to the infinite-square-well limit (µâ†’∞). Thermal rectification is investigated by integrating the equations of motion and computing the heat fluxes. As a measure of rectification, we use the difference of the currents, resulting from the interchange of the baths, divided by their average (all quantities taken in absolute value). We find that rectification can be optimized by a given value of µ that depends on the bath temperatures and details of the chains. But, regardless of the type of on-site potential considered, the interfacial potential that produces maximal rectification approaches the infinite square well (µâ†’∞) when reducing the average temperature of the baths. Our analysis of thermal rectification focuses on this regime, for which we complement numerical results with heuristic considerations.

3.
Phys Rev E ; 108(2-1): 024133, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723721

RESUMO

Particles anomalously diffusing in contact with a thermal bath are initially released from an asymptotically flat potential well. For temperatures that are sufficiently low compared to the potential depth, the dynamical and thermodynamical observables of the system remain almost constant for long times. We show how these stagnated states are characterized as non-normalizable quasiequilibrium (NNQE) states. We use the fractional-time Fokker-Planck equation (FTFPE) and continuous-time random walk approaches to calculate ensemble averages. We obtain analytical estimates of the durations of NNQE states, depending on the fractional order, from approximate theoretical solutions of the FTFPE. We study and compare two types of observables, the mean square displacement typically used to characterize diffusion, and the thermodynamic energy. We show that the typical timescales for transient stagnation depend exponentially on the value of the depth of the potential well, in units of temperature, multiplied by a function of the fractional exponent.

4.
Phys Rev E ; 107(2-1): 024122, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932490

RESUMO

We study the motion of an overdamped particle connected to a thermal heat bath in the presence of an external periodic potential in one dimension. When we coarse-grain, i.e., bin the particle positions using bin sizes that are larger than the periodicity of the potential, the packet of spreading particles, all starting from a common origin, converges to a normal distribution centered at the origin with a mean-squared displacement that grows as 2D^{*}t, with an effective diffusion constant that is smaller than that of a freely diffusing particle. We examine the interplay between this coarse-grained description and the fine structure of the density, which is given by the Boltzmann-Gibbs (BG) factor e^{-V(x)/k_{B}T}, the latter being nonnormalizable. We explain this result and construct a theory of observables using the Fokker-Planck equation. These observables are classified as those that are related to the BG fine structure, like the energy or occupation times, while others, like the positional moments, for long times, converge to those of the large-scale description. Entropy falls into a special category as it has a coarse-grained and a fine structure description. The basic thermodynamic formula F=TS-E is extended to this far-from-equilibrium system. The ergodic properties are also studied using tools from infinite ergodic theory.

5.
Phys Rev E ; 106(4-1): 044106, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397501

RESUMO

In the derivation of the thermodynamics of overdamped systems, one ignores the kinetic energy contribution since the velocity is a fast variable. In this paper, we show that the kinetic energy needs to be present in the calculation of the heat distribution to have a correct correspondence between the underdamped and overdamped cases, meaning that the velocity can not be fully ignored in the thermodynamics of these systems. We do this by investigating in detail the effect of the kinetic energy for three different systems: the harmonic potential, the logarithm potential, and an arbitrary non-isothermal process.

6.
Phys Rev E ; 105(5-1): 054149, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706286

RESUMO

We consider one-dimensional systems of all-to-all harmonically coupled particles with arbitrary masses, subject to two Langevin thermal baths. The couplings correspond to the mean-field limit of long-range interactions. Additionally, the particles can be subject to a harmonic on-site potential to break momentum conservation. Using the nonequilibrium Green's operator formalism, we calculate the transmittance, the heat flow, and local temperatures for arbitrary configurations of masses. For identical masses, we show analytically that the heat flux decays with the system size N as 1/N regardless of the conservation or not of the momentum and of the introduction or not of a Kac factor. These results describe, in good agreement, the thermal behavior of systems with small heterogeneity in the masses.

7.
Phys Rev E ; 104(1-1): 014106, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412349

RESUMO

We consider a system consisting of two interacting classical particles, each one subject to an on-site potential and to a Langevin thermal bath. We analytically calculate the heat current that can be established through the system when the bath temperatures are different, for weak nonlinear forces. We explore the conditions under which the diode effect emerges when inverting the temperature difference. Despite the simplicity of this two-particle diode, an intricate dependence on the system parameters is put in evidence. Moreover, behaviors reported for long chains of particles can be extracted, for instance, the dependence of the flux with the interfacial stiffness and type of forces present, as well as the dependencies on the temperature required for rectification. These analytical results can be a tool to foresee the distinct role that diverse types of nonlinearity and asymmetry play in thermal conduction and rectification.

8.
Phys Rev E ; 103(2-1): 022108, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33735963

RESUMO

We explore the role a non-Markovian memory kernel plays on information exchange and entropy production in the context of a external work protocol. The Jarzynski equality is shown to hold for both the harmonic and the nonharmonic models. We observe the memory function acts as an information pump, recovering part of the information lost to the thermal reservoir as a consequence of the nonequilibrium work protocol. The pumping action occurs for both the harmonic and nonharmonic cases. Unexpectedly, we found that the harmonic model does not produce entropy, regardless of the work protocol. The presence of even a small amount of nonlinearity recovers the more normal entropy producing behavior, for out-of-equilibrium protocols.

9.
Entropy (Basel) ; 23(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498204

RESUMO

We investigate the overdamped Langevin motion for particles in a potential well that is asymptotically flat. When the potential well is deep as compared to the temperature, physical observables, like the mean square displacement, are essentially time-independent over a long time interval, the stagnation epoch. However, the standard Boltzmann-Gibbs (BG) distribution is non-normalizable, given that the usual partition function is divergent. For this regime, we have previously shown that a regularization of BG statistics allows for the prediction of the values of dynamical and thermodynamical observables in the non-normalizable quasi-equilibrium state. In this work, based on the eigenfunction expansion of the time-dependent solution of the associated Fokker-Planck equation with free boundary conditions, we obtain an approximate time-independent solution of the BG form, being valid for times that are long, but still short as compared to the exponentially large escape time. The escaped particles follow a general free-particle statistics, where the solution is an error function, which is shifted due to the initial struggle to overcome the potential well. With the eigenfunction solution of the Fokker-Planck equation in hand, we show the validity of the regularized BG statistics and how it perfectly describes the time-independent regime though the quasi-stationary state is non-normalizable.

10.
Phys Rev E ; 96(5-1): 052115, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29347777

RESUMO

We propose a method that makes use of the nonlinear properties of some hypothetical microscopic solid material as the working substance for a microscopic machine. The protocols used are simple (step and elliptic) and allow us to obtain the work and heat exchanged between machine and reservoirs. We calculate the work for a nonlinear single-particle machine that can be treated perturbingly. We obtain the instantaneous work and heat for the machine undergoing cycles that mimic the Carnot and multireservoir protocols. The work calculations are then extended to high values of the nonlinear parameter yielding the quasistatic limit, which is verified numerically. The model we propose is fluctuation driven and we can study in detail its thermostatistics, namely, the work distribution both per cycle and instantaneous and the corresponding fluctuation relations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA