Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Pharmaceutics ; 15(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37242712

RESUMO

Women commonly take medication during lactation. Currently, there is little information about the exposure-related safety of maternal medicines for breastfed infants. The aim was to explore the performance of a generic physiologically-based pharmacokinetic (PBPK) model to predict concentrations in human milk for ten physiochemically diverse medicines. First, PBPK models were developed for "non-lactating" adult individuals in PK-Sim/MoBi v9.1 (Open Systems Pharmacology). The PBPK models predicted the area-under-the-curve (AUC) and maximum concentrations (Cmax) in plasma within a two-fold error. Next, the PBPK models were extended to include lactation physiology. Plasma and human milk concentrations were simulated for a three-months postpartum population, and the corresponding AUC-based milk-to-plasma (M/P) ratios and relative infant doses were calculated. The lactation PBPK models resulted in reasonable predictions for eight medicines, while an overprediction of human milk concentrations and M/P ratios (>2-fold) was observed for two medicines. From a safety perspective, none of the models resulted in underpredictions of observed human milk concentrations. The present effort resulted in a generic workflow to predict medicine concentrations in human milk. This generic PBPK model represents an important step towards an evidence-based safety assessment of maternal medication during lactation, applicable in an early drug development stage.

2.
Pharm Res ; 40(7): 1723-1734, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37258948

RESUMO

PURPOSE: Colistin is an antibiotic which is increasingly used as a last-resort therapy in critically-ill patients with multidrug resistant Gram-negative infections. The purpose of this study was to evaluate the mechanisms underlying colistin's pharmacokinetic (PK) behavior and to characterize its hepatic metabolism. METHODS: In vitro incubations were performed using colistin sulfate with rat liver microsomes (RLM) and with rat and human hepatocytes (RH and HH) in suspension. The uptake of colistin in RH/HH and thefraction of unbound colistin in HH (fu,hep) was determined. In vitro to in vivo extrapolation (IVIVE) was employed to predict the hepatic clearance (CLh) of colistin. RESULTS: Slow metabolism was detected in RH/HH, with intrinsic clearance (CLint) values of 9.34± 0.50 and 3.25 ± 0.27 mL/min/kg, respectively. Assuming the well-stirred model for hepatic drug elimination, the predicted rat CLh was 3.64± 0.22 mL/min/kg which could explain almost 70% of the reported non-renal in vivo clearance. The predicted human CLh was 91.5 ± 8.83 mL/min, which was within two-fold of the reported plasma clearance in healthy volunteers. When colistin was incubated together with the multidrug resistance-associated protein (MRP/Mrp) inhibitor benzbromarone, the intracellular accumulation of colistin in RH/HH increased significantly. CONCLUSION: These findings indicate the major role of hepatic metabolism in the non-renal clearance of colistin, while MRP/Mrp-mediated efflux is involved in the hepatic disposition of colistin. Our data provide detailed quantitative insights into the hereto unknown mechanisms responsible for non-renal elimination of colistin.


Assuntos
Colistina , Eliminação Hepatobiliar , Humanos , Ratos , Animais , Colistina/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Taxa de Depuração Metabólica
3.
Front Pharmacol ; 13: 881084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784689

RESUMO

Introduction: Quantitative information on disposition of maternal medicines in human milk remains a major knowledge gap. This case report presents the clinical and pharmacokinetic data of a single mother-infant pair exposed to bosentan and sildenafil for the treatment of pulmonary arterial hypertension (PAH) during lactation. Case presentation: A 43-year old mother was treated with sildenafil (20 mg, 3x/day) and bosentan (125 mg, 2x/day) for PAH. Her 21-months old infant received breastfeeding in combination with adequate complementary foods. Milk samples were collected over 24 h, at day 637 and 651 after delivery. The observed average steady-state concentrations of sildenafil (2.84 µg/L) and bosentan (49.0 µg/L) in human milk were low. The Daily Infant Dosage ingested by the nursing infant through human milk was 0.02 µg/kg/day for sildenafil and 0.29 µg/kg/day for bosentan at day 637, and 0.03 µg/kg/day and 0.60 µg/kg/day at day 651. The Relative Infant Dose calculated for an exclusively breastfed infant with an estimated milk intake of 150 ml/kg/day, was 0.06% for sildenafil and 0.24% for bosentan. General health outcome of the infant, reported by the mother, was uneventful until the sampling days. Conclusion: Low medicine concentrations were found in human milk expressed 21 months after delivery after maternal intake of 20 mg sildenafil three times daily and 125 mg bosentan twice daily. General health of the nursing infant until sampling was reported as optimal by the mother.

4.
Animals (Basel) ; 11(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34359140

RESUMO

The ConcePTION project aims at generating further knowledge about the risks related to the use of medication during breastfeeding, as this information is lacking for most commonly used drugs. Taking into consideration multiple aspects, the pig model has been considered by the consortium as the most appropriate choice. The present research was planned to develop an efficient method for the isolation and culture of porcine Mammary Epithelial Cells (pMECs) to study the mammary epithelial barrier in vitro. Mammary gland tissues were collected at a local slaughterhouse, dissociated and the selected cellular population was cultured, expanded and characterized by morphology, cell cycle analysis and immunophenotyping. Their ability to create a barrier was tested by TEER measurement and sodium fluorescein transport activity. Expression of 84 genes related to drug transporters was evaluated by a PCR array. Our results show that primary cells express epithelial cell markers: CKs, CK18, E-Cad and tight junctions molecules ZO-1 and OCL. All the three pMEC cellular lines were able to create a tight barrier, although with different strengths and kinetics, and express the main ABC and SLC drug transporters. In conclusion, in the present paper we have reported an efficient method to obtain primary pMEC lines to study epithelial barrier function in the pig model.

5.
J Pharmacol Exp Ther ; 379(1): 20-32, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34349015

RESUMO

Bosentan, a well-known cholestatic agent, was not identified as cholestatic at concentrations up to 200 µM based on the drug-induced cholestasis (DIC) index value, determined in a sandwich-cultured human hepatocyte (SCHH)-based DIC assay. To obtain further quantitative insights into the effects of bosentan on cellular bile salt handling by human hepatocytes, the present study determined the effect of 2.5-25 µM bosentan on endogenous bile salt levels and on the disposition of 10 µM chenodeoxycholic acid (CDCA) added to the medium in SCHHs. Bosentan reduced intracellular as well as extracellular concentrations of both endogenous glycochenodeoxycholic acid (GCDCA) and glycocholic acid in a concentration-dependent manner. When exposed to 10 µM CDCA, bosentan caused a shift from canalicular efflux to sinusoidal efflux of GCDCA. CDCA levels were not affected. Our mechanistic model confirmed the inhibitory effect of bosentan on canalicular GCDCA clearance. Moreover, our results in SCHHs also indicated reduced GCDCA formation. We confirmed the direct inhibitory effect of bosentan on CDCA conjugation with glycine in incubations with liver S9 fraction. SIGNIFICANCE STATEMENT: Bosentan was evaluated at therapeutically relevant concentrations (2.5-25 µM) in sandwich-cultured human hepatocytes. It altered bile salt disposition and inhibited canalicular secretion of glycochenodeoxycholic acid (GCDCA). Within 24 hours, bosentan caused a shift from canalicular to sinusoidal efflux of GCDCA. These results also indicated reduced GCDCA formation. This study confirmed a direct effect of bosentan on chenodeoxycholic acid conjugation with glycine in liver S9 fraction.


Assuntos
Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Bosentana/metabolismo , Bosentana/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Anti-Hipertensivos/metabolismo , Anti-Hipertensivos/farmacologia , Células Cultivadas , Meios de Cultura/metabolismo , Meios de Cultura/farmacologia , Relação Dose-Resposta a Droga , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Humanos
6.
Eur J Pharm Sci ; 162: 105813, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33753214

RESUMO

Multidrug resistance-associated protein (MRP; ABCC gene family) mediated efflux transport plays an important role in the systemic and tissue exposure profiles of many drugs and their metabolites, and also of endogenous compounds like bile acids and bilirubin conjugates. However, potent and isoform-selective inhibitors of the MRP subfamily are currently lacking. Therefore, the purpose of the present work was to identify novel rat Mrp3 inhibitors. Using 5(6)-carboxy-2',7'-dichlorofluorescein diacetate (CDFDA) as a model-(pro)substrate for Mrp3 in an oil-spin assay with primary rat hepatocytes, the extent of inhibition of CDF efflux was determined for 1584 compounds, yielding 59 hits (excluding the reference inhibitor) that were identified as new Mrp3 inhibitors. A naive Bayesian prediction model was constructed in Pipeline Pilot to elucidate physicochemical and structural features of compounds causing Mrp3 inhibition. The final Bayesian model generated common physicochemical properties of Mrp3 inhibitors. For instance, more than half of the hits contain a phenolic structure. The identified compounds have an AlogP between 2 and 4.5, between 5 to 8 hydrogen bond acceptor atoms, a molecular weight between 260 and 400, and 2 or more aromatic rings. Compared to the depleted dataset (i.e. 90% remaining compounds), the Mrp3 hit rate in the enriched set was 7.5-fold higher (i.e. 17.2% versus 2.3%). Several hits from this first screening approach were confirmed in an additional study using Mrp3 transfected inside-out membrane vesicles. In conclusion, several new and potent inhibitors of Mrp3 mediated efflux were identified in an optimized in vitro rat hepatocyte assay and confirmed using Mrp3 transfected inside-out membrane vesicles. A final naive Bayesian model was developed in an iterative way to reveal common physicochemical and structural features for Mrp3 inhibitors. The final Bayesian model will enable in silico screening of larger libraries and in vitro identification of more potent Mrp3 inhibitors.


Assuntos
Hepatócitos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Animais , Teorema de Bayes , Ácidos e Sais Biliares , Transporte Biológico , Hepatócitos/metabolismo , Ratos
7.
Biomed Pharmacother ; 136: 111038, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33526310

RESUMO

Breastfeeding plays a major role in the health and wellbeing of mother and infant. However, information on the safety of maternal medication during breastfeeding is lacking for most medications. This leads to discontinuation of either breastfeeding or maternal therapy, although many medications are likely to be safe. Since human lactation studies are costly and challenging, validated non-clinical methods would offer an attractive alternative. This review gives an extensive overview of the non-clinical methods (in vitro, in vivo and in silico) to study the transfer of maternal medication into the human breast milk, and subsequent neonatal systemic exposure. Several in vitro models are available, but model characterization, including quantitative medication transport data across the in vitro blood-milk barrier, remains rather limited. Furthermore, animal in vivo models have been used successfully in the past. However, these models don't always mimic human physiology due to species-specific differences. Several efforts have been made to predict medication transfer into the milk based on physicochemical characteristics. However, the role of transporter proteins and several physiological factors (e.g., variable milk lipid content) are not accounted for by these methods. Physiologically-based pharmacokinetic (PBPK) modelling offers a mechanism-oriented strategy with bio-relevance. Recently, lactation PBPK models have been reported for some medications, showing at least the feasibility and value of PBPK modelling to predict transfer of medication into the human milk. However, reliable data as input for PBPK models is often missing. The iterative development of in vitro, animal in vivo and PBPK modelling methods seems to be a promising approach. Human in vitro models will deliver essential data on the transepithelial transport of medication, whereas the combination of animal in vitro and in vivo methods will deliver information to establish accurate in vitro/in vivo extrapolation (IVIVE) algorithms and mechanistic insights. Such a non-clinical platform will be developed and thoroughly evaluated by the Innovative Medicines Initiative ConcePTION.


Assuntos
Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Leite Humano/metabolismo , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Animais , Feminino , Humanos , Lactente , Recém-Nascido , Exposição Materna/efeitos adversos , Modelos Animais , Farmacocinética , Medição de Risco , Especificidade da Espécie
8.
Clin Pharmacokinet ; 60(7): 897-906, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33611729

RESUMO

BACKGROUND: Therapeutic hypothermia (TH) is an established intervention to improve the outcome of neonates with moderate-to-severe hypoxic-ischemic encephalopathy resulting from perinatal asphyxia. Despite this beneficial effect, TH may further affect drug elimination pathways such as the glomerular filtration rate. OBJECTIVES: The objective of this study was to quantify the effect of TH in addition to asphyxia on mannitol clearance as a surrogate for the glomerular filtration rate. METHODS: The effect of asphyxia and TH (mild vs moderate/severe) on mannitol clearance was assessed using a population approach, based on mannitol observations collected in the ALBINO (ALlopurinol in addition to TH for hypoxic-ischemic Brain Injury on Neurocognitive Outcome) trial, as some were exposed to a second dose of 10 mg/kg intravenous mannitol as placebo to ensure blinding. Pharmacokinetic analysis and model development were conducted using NONMEM version 7.4. RESULTS: Based on 77 observations from 17 neonates (TH = 13), a one-compartment model with first-order linear elimination best described the observed data. To account for prenatal glomerular filtration rate maturation, both birthweight and gestational age were implemented as clearance covariates using an earlier published three-quarters power function and a sigmoid hyperbolic function. Our final model predicted a mannitol clearance of 0.15 L/h for a typical asphyxia neonate (39.5 weeks, birthweight 3.25 kg, no TH), lower than the reported value of 0.33 L/h for a healthy neonate of similar age and weight. By introducing TH as a binary covariate on clearance, the additional impact of TH on mannitol clearance was quantified (60% decrease). CONCLUSIONS: Mannitol clearance was decreased by approximately 60% in neonates undergoing TH, although this is likely confounded with asphyxia severity. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT03162653.


Assuntos
Asfixia Neonatal , Hipotermia Induzida , Hipotermia , Hipóxia-Isquemia Encefálica , Asfixia Neonatal/terapia , Feminino , Taxa de Filtração Glomerular , Humanos , Hipóxia-Isquemia Encefálica/terapia , Recém-Nascido , Manitol , Gravidez
9.
MethodsX ; 7: 101080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088729

RESUMO

Drug-induced cholestasis (DIC) is a major cause of clinical failure of drug candidates. Numerous patients worldwide are affected when exposed to marketed drugs exhibiting a DIC signature. Prospective identification of DIC during early compound development remains challenging. Here we describe the optimized in vitro procedure for early assessment and prediction of an increased DIC risk. Our method is based on three principles:•Exposure of primary human hepatocyte cultures to test compounds in the absence and presence of a physiologically relevant mixture of endogenous bile salts.•Rapid and quantitative assessment of the influence of concomitant bile salt exposure on hepatocyte functionality and integrity after 24 h or 48 h of incubation.•Translation of the in vitro result, expressed as a DIC index (DICI) value, into an in vivo safety margin.Using our historical control data, a new (data driven) DICI cut-off value of 0.78 was established for discerning cholestatic and non-cholestatic compounds. Our DIC assay protocol was further improved by now relying on the principle of the no observable adverse effect level (NOAEL) for determining the highest test compound concentration corresponding to a DICI  ≥  0.78. Predicted safety margin values were subsequently calculated for compounds displaying hepatotoxic and/or cholestatic effects in patients, thus enabling evaluation of the performance of our DIC assay. Of note, this assay can be extended to explore the role of drug metabolites in precipitating DIC.

10.
Drug Test Anal ; 12(8): 1183-1195, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32336034

RESUMO

Colistin (polymyxin E) is a polycation antibiotic which is increasingly used (administered as colistin methanesulfonate, CMS) as a salvage therapy in critically ill patients with multidrug resistant Gram-negative infections. Even though colistin has been used for more than 50 years, its metabolic fate is poorly understood. One of the current challenges for studying the pharmacokinetics (PK) is the precise and accurate determination of colistin in in vitro and in vivo studies. In the present study, we developed and validated a series of sensitive and robust liquid chromatography tandem mass spectrometry (LC-MS/MS) methods for analysing biological samples obtained from in vitro and in vivo disposition assays. After a zinc acetate-mediated precipitation, hydrophilic-lipophilic-balanced solid phase extraction (HLB-SPE) was used for the extraction of colistin. The compounds were retained on a hydrophilic interaction liquid chromatography (HILIC) column and were detected by MS/MS. CMS was quantified by determining the produced amount of colistin during acidic hydrolysis. The developed methods are sensitive with lower limits of quantification varying between 0.009 µg/mL and 0.071 µg/mL for colistin A, and 0.002 µg/mL to 0.013 µg/mL for colistin B. The intra- and inter-day precision and accuracy were within ±15%. Calibration curves of colistin were linear (0.063 µg/mL to 8.00 µg/mL) within clinically relevant concentration ranges. Zinc acetate-mediated precipitation and the use of a HILIC column were found to be essential. The developed methods are sensitive, accurate, precise, highly efficient and allow monitoring colistin and CMS in biological samples without the need for an internal standard.


Assuntos
Antibacterianos/análise , Cromatografia Líquida/métodos , Colistina/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Animais , Antibacterianos/farmacocinética , Colistina/análise , Colistina/farmacocinética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Extração em Fase Sólida
11.
J Clin Pharm Ther ; 45(1): 128-133, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31583723

RESUMO

WHAT IS KNOWN AND OBJECTIVE: Sampling volumes of blood from neonates is necessarily limited. However, most of the published propofol analysis assays require a relatively large blood sample volume (typically ≥0.5 mL). Therefore, the aim of the present study was to develop and validate a sensitive method requiring a smaller sample volume (0.2 mL) to fulfill clinically relevant research requirements. METHODS: Following simple protein precipitation and centrifugation, the supernatant was injected into the HPLC-fluorescence system and separated with a reverse phase column. Propofol and the internal standard (thymol) were detected and quantified using fluorescence at excitation and emission wavelengths of 270 nm and 310 nm, respectively. The method was validated with reference to the Food and Drug Administration (FDA) guidance for industry. Accuracy (CV, %) and precision (RSD, %) were evaluated at three quality control concentration levels (0.05, 0.5 and 5 µg/mL). RESULTS AND DISCUSSION: Calibration curves were linear in the range of 0.005-20 µg/mL. Intra- and interday accuracy (-4.4%-13.6%) and precision (0.2%-5.8%) for propofol were below 15%. The calculated LOD (limit of detection) and LLOQ (lower limit of quantification) were 0.0021 µg/mL and 0.0069 µg/mL, respectively. Propofol samples were stable for 4 months at -20°C after the sample preparation. This method was applied for analyzing blood samples from 41 neonates that received propofol, as part of a dose-finding study. The measured median (range) concentration was 0.14 (0.03-1.11) µg/mL, which was in the range of the calibration curve. The calculated median (range) propofol half-life of the gamma elimination phase was 10.4 (4.7-26.7) hours. WHAT IS NEW AND CONCLUSION: A minimal volume (0.2 mL) of blood from neonates is required for the determination of propofol with this method. The method can be used to support the quantification of propofol drug concentrations for pharmacokinetic studies in the neonatal population.


Assuntos
Anestésicos Intravenosos/sangue , Cromatografia Líquida de Alta Pressão/métodos , Propofol/sangue , Calibragem , Humanos , Recém-Nascido
12.
Crit Rev Toxicol ; 49(6): 520-548, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31589080

RESUMO

Drug-induced cholestasis (DIC) poses a major challenge to the pharmaceutical industry and regulatory agencies. It causes both drug attrition and post-approval withdrawal of drugs. DIC represents itself as an impaired secretion and flow of bile, leading to the pathological hepatic and/or systemic accumulation of bile acids (BAs) and their conjugate bile salts. Due to the high number of mechanisms underlying DIC, predicting a compound's cholestatic potential during early stages of drug development remains elusive. A profound understanding of the different molecular mechanisms of DIC is, therefore, of utmost importance. Although many knowledge gaps and caveats still exist, it is generally accepted that alterations of certain hepatobiliary membrane transporters and changes in hepatocellular morphology may cause DIC. Consequently, liver models, which represent most of these mechanisms, are valuable tools to predict human DIC. Some of these models, such as membrane-based in vitro models, are exceptionally well-suited to investigate specific mechanisms (i.e. transporter inhibition) of DIC, while others, such as liver slices, encompass all relevant biological processes and, therefore, offer a better representation of the in vivo situation. In the current review, we highlight the principal molecular mechanisms associated with DIC and offer an overview and critical appraisal of the different liver models that are currently being used to predict the cholestatic potential of drugs.


Assuntos
Colestase/induzido quimicamente , Bile , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Fígado
13.
Methods Mol Biol ; 1981: 55-73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016647

RESUMO

Transporters play a crucial role in the uptake of endo- and exogenous molecules in hepatocytes and efflux into the bile. The bile salt export pump (BSEP; ABCB11) is of major importance for efflux of bile salts to the bile and BSEP inhibition frequently provokes drug-induced cholestasis. This chapter describes two assays to determine inhibition of BSEP-mediated bile salt excretion. The first assay uses inside-out membrane vesicles, prepared from BSEP-transfected cell lines. The cholestasis potential of compounds can be determined by specifically investigating the ability to inhibit BSEP-mediated uptake of tauro-nor-THCA-24-DBD, a fluorescent bile salt derivative. For the second assay, relative accumulation of tauro-nor-THCA-24-DBD in sandwich-cultured hepatocytes, which represents a more biorelevant in vitro system, is investigated. Through incubation with standard or Ca2+/Mg2+-free buffer, the substrate signal can be determined in the cells and bile or the cells alone, respectively. Performing this assay in the presence and absence of potentially interfering compounds of interest enables exploration of the relative effect of these compounds on biliary excretion of the probe substrate.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Hepatócitos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Cálcio/metabolismo , Colestase/metabolismo , Humanos , Magnésio/metabolismo
14.
Methods Mol Biol ; 1981: 335-350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016665

RESUMO

Drug-induced cholestasis poses a major hurdle for the pharmaceutical industry as it is one the primary mechanisms of drug-induced liver injury. Hence, detection of drug-induced cholestasis during the early stages of drug development is of utmost importance. The most commonly used in vitro models rely on the extent of inhibition of bile salt export pump-mediated taurocholic acid transport, thereby assuming that drug-induced cholestasis mechanisms are merely restricted to the interaction with this sole hepatic transporter. Sandwich-cultured human hepatocytes represent a more holistic in vitro tool to investigate drug-induced cholestasis as they preserve all relevant disposition pathways and cellular functions involved in bile acid homeostasis. We developed and validated a sandwich-cultured human hepatocytes-based in vitro assay which is able to identify compounds causing cholestasis by altering bile acid disposition. The in vitro cholestatic potential is expressed by calculating a drug-induced cholestasis index value, which reflects the relative residual urea formation of sandwich-cultured human hepatocytes co-incubated with bile acids and test compound as compared to sandwich-cultured human hepatocytes treated with test compound alone. In addition, a safety margin can be calculated to determine the in vivo risk for cholestasis based on the determination of the drug-induced cholestasis index at various concentrations and the peak plasma concentration of the drug candidate. This chapter outlines the various steps involved in performing our sandwich-cultured human hepatocytes-based in vitro assay.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colestase/metabolismo , Colestase/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Células Cultivadas , Humanos
15.
Arch Toxicol ; 93(5): 1169-1186, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30972450

RESUMO

Cholestasis underlies one of the major manifestations of drug-induced liver injury. Drug-induced cholestatic liver toxicity is a complex process, as it can be triggered by a variety of factors that induce 2 types of biological responses, namely a deteriorative response, caused by bile acid accumulation, and an adaptive response, aimed at removing the accumulated bile acids. Several key events in both types of responses have been characterized in the past few years. In parallel, many efforts have focused on the development and further optimization of experimental cell culture models to predict the occurrence of drug-induced cholestatic liver toxicity in vivo. In this paper, a state-of-the-art overview of mechanisms and in vitro models of drug-induced cholestatic liver injury is provided.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Colestase/induzido quimicamente , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/fisiopatologia , Animais , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Colestase/fisiopatologia , Humanos , Técnicas In Vitro
16.
AAPS J ; 20(2): 33, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29468289

RESUMO

Freshly-isolated rat hepatocytes are commonly used as tools for hepatic drug disposition. From an ethical point of view, it is important to maximize the use of isolated hepatocytes by cryopreservation. The present study compared overall hepatocyte functionality as well as activity of the organic anion transporting polypeptide (Oatp), multidrug resistance-associated protein 2 (Mrp2), and UDP-glucuronosyltransferase 1 (Ugt1), in in vitro models established with cryopreserved and freshly-isolated hepatocytes. A similar culture time-dependent decline in cellular functionality, as assessed by urea production, was observed in sandwich-cultured hepatocytes (SCH) obtained from freshly-isolated and cryopreserved cells. Concentration-dependent uptake kinetics of the Oatp substrate sodium fluorescein in suspended hepatocytes (SH) or SCH were not significantly affected by cryopreservation. Mrp2-mediated biliary excretion of 5 (and 6)-carboxy-2',7'-dichlorofluorescein by SCH was assessed with semi-quantitative fluorescence imaging: biliary excretion index values increased between day 3 and day 4, but did not differ significantly between cryopreserved and freshly-isolated hepatocytes. Finally, telmisartan disposition was evaluated in SCH to simultaneously explore Oatp, Ugt1, and Mrp2 activity. In order to distinguish between the susceptibilities of the individual disposition pathways to cryopreservation, a mechanistic cellular disposition model was developed. Basolateral and canalicular efflux as well as glucuronidation of telmisartan were affected by cryopreservation. In contrast, the disposition parameters of telmisartan-glucuronide were not impacted by cryopreservation. Overall, the relative contribution of the rate-determining processes (uptake, metabolism, efflux) remained unaltered between cryopreserved and freshly-isolated hepatocytes, indicating that cryopreserved hepatocytes are a suitable alternative for freshly-isolated hepatocytes when studying these cellular disposition pathways.


Assuntos
Técnicas de Cultura de Células/métodos , Criopreservação , Hepatócitos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células Cultivadas , Glucuronídeos/química , Glucuronosiltransferase/metabolismo , Fígado/citologia , Masculino , Transportadores de Ânions Orgânicos/metabolismo , Ratos , Ratos Wistar , Telmisartan/química , Telmisartan/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-29079456

RESUMO

INTRODUCTION: Sandwich-cultured rat hepatocytes (SCRH) have become an invaluable in vitro model to study hepatic drug disposition. SCRH are maintained between two layers of extracellular matrix. In this configuration, culture periods of 4days are typically applicable. The aim of the present study was to modify conventional SCRH by applying an additional collagen overlay to prolong the hepatic phenotype in SCRH and thus to extend the applicability of the model. METHODS: The cultures receiving an extra top layer ('SCRH-plus' cultures) were compared with the conventional SCRH by testing the morphology, cell functionality, metabolic capacity and Mrp2-activity. RESULTS: In the SCRH-plus cultures, cell functionality, evaluated by measuring urea production, was increased from day 5 onwards, compared to conventional cultures. Furthermore, these cells retained the appearance of typical hepatocytes, in contrast with conventional sandwich cultures which showed rapid dedifferentiation. SCRH-plus exhibited significantly improved metabolic clearance mediated by cytochrome P450 3A compared to conventional SCRH whereas UDP-glucuronosyltransferase-mediated metabolism was unaffected. Both conventional SCRH and SCRH-plus showed extensive biliary networks at day 4 of culture. However, from day 4 onwards, a decline in biliary excretion index (BEI) was observed in the conventional SCRH, while BEI values in SCRH-plus cultures did not decrease until day 7. DISCUSSION: The application of an extra top layer of collagen on the SCRH prolongs their useful life-span to 7days. Therefore, SCRH-plus cultures will broaden the applications of SCRH in terms of long-term toxicity evaluation and when determining metabolism of low turnover compounds.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Colágeno/farmacologia , Hepatócitos/efeitos dos fármacos , Animais , Bile/efeitos dos fármacos , Bile/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Glucuronosiltransferase/metabolismo , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Fenótipo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA