Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39276751

RESUMO

Metabolic pathways are affected by the impacts of environmental contaminants underlying a large variability of toxic effects across different species. However, the systematic reconstruction of metabolic pathways remains limited in environmental sentinel species due to the lack of available genomic data in many taxa of animal diversity. In this study we used a multi-omics approach to reconstruct the most comprehensive map of metabolic pathways for a crustacean model in biomonitoring, the amphipod Gammarus fossarum in order to improve the knowledge of the metabolism of this sentinel species. We revisited the assembly of RNA-seq data by de novo approaches to reduce RNA contaminants and transcript redundancy. We also acquired extensive mass spectrometry shotgun proteomic data on several organs from a reference population of G. fossarum males and females to identify organ-specific metabolic profiles. The G. fossarum metabolic pathway reconstruction (available through the metabolic database GamfoCyc) was performed by adapting the genomic tool CycADS and we identified 377 pathways representing 7630 annotated enzymes, 2610 enzymatic reactions and the expression of 858 enzymes was experimentally validated by proteomics. To our knowledge, our analysis provides for the first time a systematic metabolic pathway reconstruction and the proteome profiles of these pathways at the organ level in this sentinel species. As an example, we show an elevated abundance in enzymes involved in ATP biosynthesis and fatty acid beta-oxidation indicative of the high-energy requirement of the gills, or the key anabolic and detoxification role of the hepatopancreatic caeca, as exemplified by the specific expression of the retinoid biosynthetic pathways and glutathione synthesis. In conclusion, the multi-omics data integration performed in this study provides new resources to investigate metabolic processes in crustacean amphipods and their role in mediating the effects of environmental contaminant exposures in sentinel species. SYNOPSIS: This study provide the first evidence that it is possible to combine multiple omics data to exhaustively describe the metabolic network of a model species in ecotoxicology, Gammarus fossarum, for which a reference genome is not yet available.

2.
Environ Toxicol Chem ; 43(9): 2071-2079, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38980263

RESUMO

The long-term impacts of radiocontaminants (and the associated risks) for ecosystems are still subject to vast societal and scientific debate while wildlife is chronically exposed to various sources and levels of either environmental or anthropogenic ionizing radiation from the use of nuclear energy. The present study aimed to assess induced phenotypical responses in both male and female gammarids after short-term continuous γ-irradiation, acting as a typical well-characterized genotoxic stressor that can interact directly with living matter. In particular, we started characterizing the effects using standardized measurements for biological effects on few biological functions for this species, especially feeding inhibition tests, molting, and reproductive ability, which have already been proven for chemical substances and are likely to be disturbed by ionizing radiation. The results show no significant differences in terms of the survival of organisms (males and females), of their short-term food consumption which is linked to the general health status (males and females), and of the molting cycle (females). In contrast, exposure significantly affected fecundity (number of embryos produced) at the highest dose rates for irradiated females (51 mGy h-1) and males (5 and 51 mGy h-1). These results showed that, in gammarids, reproduction, which is a critical endpoint for population dynamics, is the most radiosensitive phenotypic endpoint, with significant effects recorded on male reproductive capacity, which is more sensitive than in females. Environ Toxicol Chem 2024;43:2071-2079. © 2024 SETAC.


Assuntos
Raios gama , Reprodução , Animais , Masculino , Feminino , Reprodução/efeitos dos fármacos , Anfípodes/efeitos dos fármacos , Espécies Sentinelas , Muda/efeitos dos fármacos
3.
Aquat Toxicol ; 271: 106935, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723468

RESUMO

Blood lipid-lowering agents, such as Pravastatin, are among the most frequently used pharmaceuticals released into the aquatic environment. Although their effects on humans are very well understood, their consequences on freshwater organisms are not well known, especially in chronic exposure conditions. Gammarus fossarum is commonly used as sentinel species in ecotoxicology because of its sensitivity to a wide range of environmental contaminants and the availability of standardized bioassays. Moreover, there is an increased interest in linking molecular changes in sentinel species, such as gammarids, to observed toxic effects. Here, we performed a reproductive toxicity assay on females exposed to different concentrations of pravastatin (30; 300; 3,000 and 30,000 ng L-1) during two successive reproductive cycles and we applied ToF-SIMS imaging to evaluate the effect of pravastatin on lipid homeostasis in gammarids. Reproductive bioassay showed that pravastatin could affect oocyte development in Gammarus fossarum inducing embryotoxicity in the second reproductive cycle. Mass spectrometry imaging highlighted the disruption in vitamin E production in the oocytes of exposed female gammarids at the second reproductive cycle, while limited alterations were observed in other lipid classes, regarding both production and tissue distribution. The results demonstrated the interest of applying spatially resolved lipidomics by mass spectrometry imaging to assess the molecular effects induced by long-term exposure to environmental pharmaceutical residues in sentinel species.


Assuntos
Anfípodes , Pravastatina , Reprodução , Poluentes Químicos da Água , Animais , Pravastatina/toxicidade , Poluentes Químicos da Água/toxicidade , Feminino , Anfípodes/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Espectrometria de Massa de Íon Secundário , Oócitos/efeitos dos fármacos , Vitamina E
4.
Anal Chim Acta ; 1304: 342533, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637034

RESUMO

BACKGROUND: DIA (Data-Independent Acquisition) is a powerful technique in Liquid Chromatography coupled with high-resolution tandem Mass Spectrometry (LC-MS/MS) initially developed for proteomics studies and recently emerging in metabolomics and lipidomics. It provides a comprehensive and unbiased coverage of molecules with improved reproducibility and quantitative accuracy compared to Data-Dependent Acquisition (DDA). Combined with the Zeno trap and Electron-Activated Dissociation (EAD), DIA enhances data quality and structural elucidation compared to conventional fragmentation under CID. These tools were applied to study the lipidome and metabolome of the freshwater amphipod Gammarus fossarum, successfully discriminating stages and highlighting significant biological features. Despite being underused, DIA, along with the Zeno trap and EAD, holds great potential for advancing research in the omics field. RESULTS: DIA combined with the Zeno trap enhances detection reproducibility compared to conventional DDA, improving fragmentation spectra quality and putative identifications. LC coupled with Zeno-SWATH-DIA methods were used to characterize molecular changes in reproductive cycle of female gammarids. Multivariate data analysis including Principal Component Analysis and Partial Least Square Discriminant Analysis successfully identified significant features. EAD fragmentation helped to identify unknown features and to confirm their molecular structure using fragmentation spectra database annotation or machine learning. EAD database matching accurately annotated five glycerophospholipids, including the position of double bonds on fatty acid chain moieties. SIRIUS database predicted structures of unknown features based on experimental fragmentation spectra to compensate for database incompleteness. SIGNIFICANCE: Reproducible detection of features and confident identification of putative compounds are pivotal stages within analytical pipelines. The DIA approach combined with Zeno pulsing enhances detection sensitivity and targeted fragmentation with EAD in positive polarity provides orthogonal fragmentation information. In our study, Zeno-DIA and EAD thereby facilitated a comprehensive and insightful exploration of pertinent biological molecules associated with the reproductive cycle of gammarids. The developed methodology holds great promises for identifying informative biomarkers on the health status of an environmental sentinel species.


Assuntos
Anfípodes , Lipidômica , Animais , Feminino , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Elétrons , Muda , Reprodutibilidade dos Testes , Metaboloma , Aprendizado de Máquina
5.
Anal Bioanal Chem ; 416(12): 2893-2911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492024

RESUMO

The past decades have marked the rise of metabolomics and lipidomics as the -omics sciences which reflect the most phenotypes in living systems. Mass spectrometry-based approaches are acknowledged for both quantification and identification of molecular signatures, the latter relying primarily on fragmentation spectra interpretation. However, the high structural diversity of biological small molecules poses a considerable challenge in compound annotation. Feature-based molecular networking (FBMN) combined with database searches currently sets the gold standard for annotation of large datasets. Nevertheless, FBMN is usually based on collision-induced dissociation (CID) data, which may lead to unsatisfying information. The use of alternative fragmentation methods, such as electron-activated dissociation (EAD), is undergoing a re-evaluation for the annotation of small molecules, as it gives access to additional fragmentation routes. In this study, we apply the performances of data-dependent acquisition mass spectrometry (DDA-MS) under CID and EAD fragmentation along with FBMN construction, to perform extensive compound annotation in the crude extracts of the freshwater sentinel organism Gammarus fossarum. We discuss the analytical aspects of the use of the two fragmentation modes, perform a general comparison of the information delivered, and compare the CID and EAD fragmentation pathways for specific classes of compounds, including previously unstudied species. In addition, we discuss the potential use of FBMN constructed with EAD fragmentation spectra to improve lipid annotation, compared to the classic CID-based networks. Our approach has enabled higher confidence annotations and finer structure characterization of 823 features, including both metabolites and lipids detected in G. fossarum extracts.


Assuntos
Anfípodes , Lipídeos , Metabolômica , Animais , Anfípodes/metabolismo , Anfípodes/química , Lipídeos/química , Lipídeos/análise , Metabolômica/métodos , Lipidômica/métodos , Espectrometria de Massas/métodos , Espécies Sentinelas/metabolismo , Elétrons
6.
Environ Sci Pollut Res Int ; 31(5): 6587-6596, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37966636

RESUMO

The adverse outcome pathway (AOP) has been conceptualized in 2010 as an analytical construct to describe a sequential chain of causal links between key events, from a molecular initiating event leading to an adverse outcome (AO), considering several levels of biological organization. An AOP aims to identify and organize available knowledge about toxic effects of chemicals and drugs, either in ecotoxicology or toxicology, and it can be helpful in both basic and applied research and serve as a decision-making tool in support of regulatory risk assessment. The AOP concept has evolved since its introduction, and recent research in toxicology, based on integrative systems biology and artificial intelligence, gave it a new dimension. This innovative in silico strategy can help to decipher mechanisms of action and AOP and offers new perspectives in AOP development. However, to date, this strategy has not yet been applied to ecotoxicology. In this context, the main objective of this short article is to discuss the relevance and feasibility of transferring this strategy to ecotoxicology. One of the challenges to be discussed is the level of organisation that is relevant to address for the AO (population/community). This strategy also offers many advantages that could be fruitful in ecotoxicology and overcome the lack of time, such as the rapid identification of data available at a time t, or the identification of "data gaps". Finally, this article proposes a step forward with suggested priority topics in ecotoxicology that could benefit from this strategy.


Assuntos
Rotas de Resultados Adversos , Ecotoxicologia , Ecotoxicologia/métodos , Inteligência Artificial , Medição de Risco/métodos
7.
Sci Data ; 10(1): 643, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735452

RESUMO

Proteogenomic methodologies have enabled the identification of protein sequences in wild species without annotated genomes, shedding light on molecular mechanisms affected by pollution. However, proteomic resources for sentinel species are limited, and organ-level investigations are necessary to expand our understanding of their molecular biology. This study presents proteomic resources obtained from proteogenomic analyses of key organs (hepatopancreas, gills, hemolymph) from three established aquatic sentinel invertebrate species of interest in ecotoxicological/ecological research and environmental monitoring: Gammarus fossarum, Dreissena polymorpha, and Palaemon serratus. Proteogenomic analyses identified thousands of proteins for each species, with over 90% of them being annotated to putative function. Functional analysis validated the relevance of the proteomic atlases by revealing similarities in functional annotation of catalogues of proteins across analogous organs in the three species, while deep contrasts between functional profiles are delimited across different organs in the same organism. These organ-level proteomic atlases are crucial for future research on these sentinel animals, aiding in the evaluation of aquatic environmental risks and providing a valuable resource for ecotoxicological studies.


Assuntos
Invertebrados , Proteogenômica , Animais , Sequência de Aminoácidos , Proteômica , Espécies Sentinelas
8.
Sci Total Environ ; 903: 166216, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567286

RESUMO

Considering long-term population effects of chronic exposure to contaminants remains limited in ecological risk assessment. Field evidence that multigenerational exposure influences organisms' sensitivity is still scarce, and mechanisms have yet to be elucidated in the environmental context. This study focuses on the crustacean Gammarus fossarum, for which an increased tolerance to cadmium (Cd) has previously been reported in a naturally low-contaminated headwater stream. Our objectives were to investigate whether Cd tolerance is a common phenomenon in headwater populations, and to elucidate the nature of the tolerance and its intergenerational transmission. For this, we carried out an in-depth in situ characterization of Cd exposure (gammarids' caging) and levels of tolerance in nine populations on a regional scale, as well as laboratory maintenance and cross-breeding of contaminated and uncontaminated populations. Acute tolerance levels correlate positively with bioavailable Cd contamination levels among streams. The contaminated and non-contaminated populations differ about two-fold in sensitivity to Cd. Tolerance was found in all age classes of contaminated populations, it can be transiently lost during the year, and it was transmissible to offspring. In addition, tolerance levels dropped significantly when organisms were transferred to a Cd-free environment for two months. These organisms also ceased producing tolerant offspring, confirming a non-genetic transmission of Cd tolerance between generations. These findings support that Cd tolerance corresponds to non-genetic acclimation combined with transgenerational plasticity. Moreover, cross-breeding revealed that tolerance transmission to offspring is not limited to maternal effect. We suggest epigenetics as a plausible mechanism for the plasticity of Cd sensitivity observed in the field. Our results therefore highlight the neglected role of plasticity and non-genetic transmission of modified sensitivities during the long-term exposure of natural populations to environmental contamination.

9.
Sci Total Environ ; 893: 164875, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37329916

RESUMO

Mass spectrometry in multiple reaction monitoring (MRM) mode is a powerful technique that can provide highly selective, multiplexed, and reproducible quantification of peptides derived from proteins. Ideal for the application of molecular biomarkers in biomonitoring surveys, MRM tools have been recently developed to quantify sets of pre-selected biomarkers in freshwater sentinel species. Still limited to the validation and application phase of biomarkers, dynamic MRM (dMRM) acquisition mode has increased the multiplexing capacity of mass spectrometers, expanding opportunities to explore proteome modulations in sentinel species. This study evaluated the feasibility to propose dMRM tools for investigating sentinel species proteomes at the organ level and demonstrated its potential for screening contaminant effects and discovering new protein biomarkers. As a proof of concept, a dMRM assay was developed to comprehensively capture the functional proteome of the caeca of Gammarus fossarum, a freshwater crustacean, commonly used as a sentinel species in environmental biomonitoring. The assay was then used to assess the effects of sub-lethal concentrations of cadmium, silver, and zinc on gammarid caeca. Results showed dose-response and specific metal effects on caecal proteomes, with a slight effect of zinc compared to the two non-essential metals. Functional analyses indicated that cadmium affected proteins involved in carbohydrate metabolism, digestive and immune processes, while silver affected proteins related to oxidative stress response, chaperonin complexes and fatty acid metabolism. Based on these metal-specific signatures, several proteins modulated in a dose-dependent manner were proposed as candidate biomarkers for tracking the level of these metals in freshwater ecosystems. Overall, this study highlights the potential of dMRM to decipher the specific modulations of proteome expression induced by contaminant exposure and pinpoints specific response signatures, offering new perspectives for the de novo identification and development of biomarkers in sentinel species.


Assuntos
Anfípodes , Gastrópodes , Animais , Anfípodes/fisiologia , Biomarcadores/metabolismo , Cádmio/toxicidade , Ecossistema , Gastrópodes/metabolismo , Proteoma , Espécies Sentinelas/metabolismo , Prata/toxicidade , Zinco/toxicidade
11.
Nat Commun ; 14(1): 1385, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914637

RESUMO

Charge noise in the host semiconductor degrades the performance of spin-qubits and poses an obstacle to control large quantum processors. However, it is challenging to engineer the heterogeneous material stack of gate-defined quantum dots to improve charge noise systematically. Here, we address the semiconductor-dielectric interface and the buried quantum well of a 28Si/SiGe heterostructure and show the connection between charge noise, measured locally in quantum dots, and global disorder in the host semiconductor, measured with macroscopic Hall bars. In 5 nm thick 28Si quantum wells, we find that improvements in the scattering properties and uniformity of the two-dimensional electron gas over a 100 mm wafer correspond to a significant reduction in charge noise, with a minimum value of 0.29 ± 0.02 µeV/Hz½ at 1 Hz averaged over several quantum dots. We extrapolate the measured charge noise to simulated dephasing times to CZ-gate fidelities that improve nearly one order of magnitude. These results point to a clean and quiet crystalline environment for integrating long-lived and high-fidelity spin qubits into a larger system.

12.
Talanta ; 253: 123806, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113334

RESUMO

Omics study exemplified by proteomics, lipidomics or metabolomics, provides the opportunity to get insight of the molecular modifications occurring in living organisms in response to contaminants or in different physiological conditions. However, individual omics discloses only a single layer of information leading to a partial image of the biological complexity. Multiplication of samples preparation and processing can generate analytical variations resulting from several extractions and instrumental runs. To get all the -omics information at the proteins, metabolites and lipids level coming from a unique sample, a specific sample preparation must be optimized. In this study, we streamlined a biphasic extraction procedure based on a MTBE/Methanol mixture to provide the simultaneous extraction of polar (proteins, metabolites) and apolar compounds (lipids) for multi-omics analyses from a unique biological sample by a liquid chromatography (LC)/mass spectrometry (MS)/MS-based targeted approach. We applied the methodology for the study of female amphipod Gammarus fossarum during the reproductive cycle. Multivariate data analyses including Partial Least Squares Discriminant Analysis and multiple factor analysis were applied for the integration of the multi-omics data sets and highlighted molecular signatures, specific to the different stages.


Assuntos
Multiômica , Proteômica , Feminino , Humanos , Análise de Dados , Lipidômica , Metabolômica
13.
Environ Pollut ; 315: 120393, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36223854

RESUMO

Multiple reaction monitoring (MRM) mass spectrometry is emerging as a relevant tool for measuring customized molecular markers in freshwater sentinel species. While this technique is typically used for the validation of protein molecular markers preselected from shotgun experiments, recent gains of MRM multiplexing capacity offer new possibilities to conduct large-scale screening of animal proteomes. By combining the strength of active biomonitoring strategies and MRM technologies, this study aims to propose a new strategy for the discovery of candidate proteins that respond to environmental variability. For this purpose, 249 peptides derived from 147 proteins were monitored by MRM in 273 male gammarids caged in 56 environmental sites, representative of the diversity of French water bodies. A methodology is here proposed to identify a set of customized housekeeping peptides (HKPs) used to correct analytical batch effects and allow proper comparison of peptide levels in gammarids. A comparative analysis performed on HKPs-normalized data resulted in the identification of peptides highly modulated in the environment and derived from proteins likely involved in the environmental stress response. Overall, this study proposes a breakthrough approach to screen and identify potential proteins responding to relevant environmental conditions in sentinel species.


Assuntos
Anfípodes , Espécies Sentinelas , Animais , Masculino , Monitoramento Ambiental/métodos , Anfípodes/metabolismo , Água Doce/química , Biomarcadores/metabolismo , Espectrometria de Massas
14.
Cancers (Basel) ; 13(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208581

RESUMO

Upper aerodigestive tract (UADT) tumors present different biological behavior and prognosis, suggesting specific molecular mechanisms underlying their development. However, they are rarely considered as single entities (particularly head and neck subsites) and share the most common genetic alterations. Therefore, there is a need for a better understanding of the global DNA methylation differences among UADT tumors. We performed a genome-wide DNA methylation analysis of esophageal (ESCC), laryngeal (LSCC), oral (OSCC) and oropharyngeal (OPSCC) squamous cell carcinomas, and their non-tumor counterparts. The unsupervised analysis showed that non-tumor tissues present markedly distinct DNA methylation profiles, while tumors are highly heterogeneous. Hypomethylation was more frequent in LSCC and OPSCC, while ESCC and OSCC presented mostly hypermethylation, with the latter showing a CpG island overrepresentation. Differentially methylated regions affected genes in 127 signaling pathways, with only 3.1% of these being common among different tumor subsites, but with different genes affected. The WNT signaling pathway, known to be dysregulated in different epithelial tumors, is a frequent hit for DNA methylation and gene expression alterations in ESCC and OPSCC, but mostly for genetic alterations in LSCC and OSCC. UADT tumor subsites present differences in genome-wide methylation regarding their profile, intensity, genomic regions and signaling pathways affected.

15.
Environ Sci Technol ; 55(15): 10514-10523, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34283579

RESUMO

The transfer of methyl-Hg (MeHg) from food is central for its effects in aquatic animals, but we still lack knowledge concerning its impact on invertebrate primary consumers. In aquatic environments, cell walls of plants are particularly recalcitrant to degradation and as such remain available as a food source for long periods. Here, the impact at the proteomic level of dietary MeHg in Gammarus fossarum was established and linked to subcellular distribution of Hg. Individuals of G. fossarum were fed with MeHg in cell wall or intracellular compartments of Elodea nuttallii. Hg concentrations in subcellular fractions were 2 to 6 times higher in animals fed with cell wall than intracellular compartments. At the higher concentrations tested, the proportion of Hg in metal-sensitive fraction increased from 30.0 ± 6.1 to 41.0 ± 5.7% for individuals fed with intracellular compartment, while biologically detoxified metal fraction increased from 30.0 ± 6.1 to 50.0 ± 2.8% when fed with cell wall compartment. Data suggested that several thresholds of proteomic response are triggered by increased bioaccumulation in each subcellular fraction in correlation with Hg exclusively bound to the metal-sensitive fraction, while the increase of biologically detoxified metal likely had a cost for fitness. Proteomics analysis supported that the different binding sites and speciation in shoots subsequently resulted in different fate and cellular toxicity pathways to consumers. Our data confirmed that Hg bound in cell walls of plants can be assimilated by G. fossarum, which is consistent with its feeding strategy, hence pointing cell walls as a significant source for Hg transfers and toxicity in primary consumers. The high accumulation of Hg in macrophytes makes them a risk for food web transfer in shallow ecosystems. The present results allowed gaining new insights into the effects and uptake mechanisms of MeHg in aquatic primary consumers.


Assuntos
Anfípodes , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Ecossistema , Cadeia Alimentar , Humanos , Proteoma , Proteômica , Poluentes Químicos da Água/análise
16.
iScience ; 24(2): 102115, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33615205

RESUMO

Sentinel species are playing an indispensable role in monitoring environmental pollution in aquatic ecosystems. Many pollutants found in water prove to be endocrine disrupting chemicals that could cause disruptions in lipid homeostasis in aquatic species. A comprehensive profiling of the lipidome of these species is thus an essential step toward understanding the mechanism of toxicity induced by pollutants. Both the composition and spatial distribution of lipids in freshwater crustacean Gammarus fossarum were extensively examined herein. The baseline lipidome of gammarids of different sex and reproductive stages was established by high throughput shotgun lipidomics. Spatial lipid mapping by high resolution mass spectrometry imaging led to the discovery of sulfate-based lipids in hepatopancreas and their accumulation in mature oocytes. A diverse and dynamic lipid composition in G. fossarum was uncovered, which deepens our understanding of the biochemical changes during development and which could serve as a reference for future ecotoxicological studies.

17.
Toxics ; 10(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35051048

RESUMO

Hazard assessment strategies are often supported by extrapolation of damage probabilities, regarding chemical action and species susceptibilities. Yet, growing evidence suggests that an adequate sampling of physiological responses across a representative taxonomic scope is of paramount importance. This is particularly relevant for Nuclear Receptors (NR), a family of transcription factors, often triggered by ligands and thus, commonly exploited by environmental chemicals. Within NRs, the ligand-induced Ecdysone Receptor (EcR) provides a remarkable example. Long regarded as arthropod specific, this receptor has been extensively targeted by pesticides, seemingly innocuous to non-target organisms. Yet, current evidence clearly suggests a wider presence of EcR orthologues across metazoan lineages, with unknown physiological consequences. Here, we address the state-of-the-art regarding the phylogenetic distribution and functional characterization of metazoan EcRs and provide a critical analysis of the potential disruption of such EcRs by environmental chemical exposure. Using EcR as a case study, hazard assessment strategies are also discussed in view of the development of a novel "precision hazard assessment paradigm.

18.
Int J Mol Sci ; 21(13)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630258

RESUMO

We explore the delayed consequences of parental exposure to environmentally relevant cadmium concentrations on the life-history traits throughout generations of the freshwater crustacean Gammarus fossarum. We report the preliminary results obtained during a challenging one-year laboratory experiment in this environmental species and propose the use of population modeling to interpret the changes in offspring life-history traits regarding their potential demographic impacts. The main outcome of this first long-term transgenerational assay is that the exposure of spawners during a single gametogenesis cycle (3 weeks) could result in severe cascading effects on the life-history traits along three unexposed offspring generations (one year). Indeed, we observed a decrease in F1 reproductive success, an early onset of F2 offspring puberty with reduced investment in egg yolk reserves, and finally a decrease in the growth rate of F3 juveniles. However, the analysis of these major transgenerational effects by means of a Lefkovitch matrix population model revealed only weak demographic impacts. Population compensatory processes mitigating the demographic consequences of parental exposure seem to drive the modification of life-history traits in offspring generations. This exploratory study sheds light on the role of population mechanisms involved in the demographic regulation of the delayed effects of environmental toxicity in wild populations.


Assuntos
Anfípodes/efeitos dos fármacos , Cádmio/efeitos adversos , Cádmio/toxicidade , Anfípodes/genética , Anfípodes/fisiologia , Animais , Monitoramento Ambiental/métodos , Poluição Ambiental/efeitos adversos , Dinâmica Populacional , Reprodução/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos
19.
J Proteomics ; 226: 103901, 2020 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-32668291

RESUMO

Ecotoxicoproteomics employs mass spectrometry-based approaches centered on proteins of sentinel organisms to assess for instance, chemical toxicity in fresh water. In this study, we combined proteogenomics experiments and a novel targeted proteomics approach free from retention time scheduling called Scout-MRM. This methodology will enable the measurement of simultaneously changes in the relative abundance of multiple proteins involved in key physiological processes and potentially impacted by contaminants in the freshwater sentinel Gammarus fossarum. The development and validation of the assay were performed to target 157 protein biomarkers of this non-model organism. We carefully chose and validated the transitions to monitor using conventional parameters (linearity, repeatability, LOD, LOQ). Finally, the potential of the methodology is illustrated by measuring 277-peptide-plex assay (831 transitions) in sentinel animals exposed in natura to different agricultural sites potentially exposed to pesticide contamination. Multivariate data analyses highlighted the modulation of several key proteins involved in feeding and molting. This multiplex-targeted proteomics assay paves the way for the discovery and the use of a large panel of novel protein biomarkers in emergent ecotoxicological models for environmental monitoring in the future. BIOLOGICAL SIGNIFICANCE: The study contributed to the development of Scout-MRM for the high-throughput quantitation of a large panel of proteins in the Gammarus fossarum freshwater sentinel. Increasing the number of markers in ecotoxicoproteomics is of most interest to assess the impact of pollutants in freshwater organisms. The development and validation of the assay enabled the monitoring of a large panel of reporter peptides of exposed gammarids. To illustrate the applicability of the methodology, animals from different agricultural sites were analysed. The application of the assay highlighted the modulation of some biomarker proteins involved in key physiological pathways, such as molting, feeding and general stress response. Increasing multiplexing capabilities and field test will provide the development of diagnostic protein biomarkers for emergent ecotoxicological models in future environmental biomonitoring programs.


Assuntos
Anfípodes , Animais , Biomarcadores , Ecotoxicologia , Monitoramento Ambiental , Proteômica
20.
J Mass Spectrom ; 55(9): e4531, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32567158

RESUMO

The highly diverse chemical structures of lipids make their analysis directly from biological tissue sections extremely challenging. Here, we report the in situ mapping and identification of lipids in a freshwater crustacean Gammarus fossarum using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) in combination with an additional separation dimension using ion mobility spectrometry (IMS). The high-resolution trapped ion mobility spectrometry (TIMS) allowed efficient separation of isobaric/isomeric lipids showing distinct spatial distributions. The structures of the lipids were further characterized by MS/MS analysis. It is demonstrated that MALDI MSI with mobility separation is a powerful tool for distinguishing and localizing isobaric/isomeric lipids.


Assuntos
Anfípodes/química , Espectrometria de Mobilidade Iônica/métodos , Lipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Feminino , Isomerismo , Lipídeos/química , Estrutura Molecular , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA