Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Neurooncol ; 167(3): 447-454, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38443693

RESUMO

PURPOSE: The use of trametinib in the treatment of pediatric low-grade gliomas (PLGG) and plexiform neurofibroma (PN) is being investigated in an ongoing multicenter phase II trial (NCT03363217). Preliminary data shows potential benefits with significant response in the majority of PLGG and PN and an overall good tolerance. Moreover, possible benefits of MEK inhibitor therapy on cognitive functioning in neurofibromatosis type 1 (NF1) were recently shown which supports the need for further evaluation. METHODS: Thirty-six patients with NF1 (age range 3-19 years) enrolled in the phase II study of trametinib underwent a neurocognitive assessment at inclusion and at completion of the 72-week treatment. Age-appropriate Wechsler Intelligence Scales and the Trail Making Test (for children over 8 years old) were administered at each assessment. Paired t-tests and Reliable Change Index (RCI) analyses were performed to investigate change in neurocognitive outcomes. Regression analyses were used to investigate the contribution of age and baseline score in the prediction of change. RESULTS: Stable performance on neurocognitive tests was revealed at a group-level using paired t-tests. Clinically significant improvements were however found on specific indexes of the Wechsler intelligence scales and Trail Making Test, using RCI analyses. No significant impact of age on cognitive change was evidenced. However, lower initial cognitive performance was associated with increased odds of presenting clinically significant improvements on neurocognitive outcomes. CONCLUSION: These preliminary results show a potential positive effect of trametinib on cognition in patients with NF1. We observed significant improvements in processing speed, visuo-motor and verbal abilities. This study demonstrates the importance of including neuropsychological evaluations into clinical trial when using MEK inhibitors for patients with NF1.


Assuntos
Neurofibromatose 1 , Testes Neuropsicológicos , Piridonas , Pirimidinonas , Humanos , Piridonas/uso terapêutico , Pirimidinonas/uso terapêutico , Pirimidinonas/farmacologia , Pirimidinonas/administração & dosagem , Masculino , Feminino , Adolescente , Criança , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/complicações , Neurofibromatose 1/psicologia , Adulto Jovem , Pré-Escolar , Glioma/tratamento farmacológico , Glioma/psicologia , Glioma/complicações , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/psicologia , Neoplasias Encefálicas/complicações , Adulto , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/efeitos adversos
2.
Biomed Opt Express ; 15(2): 624-640, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404350

RESUMO

Here, we present MCOCT, a Monte Carlo simulator for optical coherence tomography (OCT), incorporating a Gaussian illumination scheme and bias to increase backscattered event collection. MCOCT optical fluence was numerically compared and validated to an established simulator (MCX) and showed concordance at the focus while diverging slightly with distance to it. MCOCT OCT signals were experimentally compared and validated to OCT signals acquired in tissue-mimicking phantoms with known optical properties and showed a similar attenuation pattern with increasing depth while diverging beyond 1.5 mm and proximal to layer interfaces. MCOCT may help in the design of OCT systems for a wide range of applications.

3.
Heliyon ; 10(1): e23445, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173515

RESUMO

Rationale and objectives: Plexiform neurofibromas (PNs) are peripheral nerve tumors that occur in 25-50 % of patients with neurofibromatosis type 1. PNs may have complex, diffused, and irregular shapes. The objective of this work was to develop a volumetric quantification method for PNs as clinical assessment is currently based on unidimensional measurement. Materials and methods: A semi-automatic segmentation technique based on mean magnetic resonance imaging (MRI) intensity thresholding (SSTMean) was developed and compared to a similar and previously published technique based on minimum image intensity thresholding (SSTMini). The performance (volume and computation time) of the two techniques was compared to manual tracings of 15 tumors of different locations, shapes, and sizes. Performance was also assessed using different MRI sequences. Reproducibility was assessed by inter-observer analysis. Results: When compared to manual tracing, quantification performed with SSTMean was not significantly different (mean difference: 1.2 %), while volumes computed by SSTMini were significantly different (p < .0001, mean difference: 13.4 %). Volumes quantified by SSTMean were also significantly different than the ones assessed by SSTMini (p < .0001). Using SSTMean, volumes quantified with short TI inversion recovery, T1-, and T2-weighted imaging were not significantly different. Computation times used by SSTMean and SSTMini were significantly lower than for manual segmentation (p < .0001). The highest difference measured by two users was 8 cm3. Conclusion: Our method showed accuracy compared to a current gold standard (manual tracing) and reproducibility between users. The refined segmentation threshold and the possibility to define multiple regions-of-interest to initiate segmentation may have contributed to its performance. The versatility and speed of our method may prove useful to better monitor volumetric changes in lesions of patients enrolled in clinical trials to assessing response to therapy.

4.
J Neurotrauma ; 41(5-6): 587-603, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37489293

RESUMO

Advanced magnetic resonance imaging (MRI) techniques indicate that concussion (i.e., mild traumatic brain injury) disrupts brain structure and function in children. However, the functional connectivity of brain regions within global and local networks (i.e., functional connectome) is poorly understood in pediatric concussion. This prospective, longitudinal study addressed this gap using data from the largest neuroimaging study of pediatric concussion to date to study the functional connectome longitudinally after concussion as compared with mild orthopedic injury (OI). Children and adolescents (n = 967) 8-16.99 years with concussion or mild OI were recruited from pediatric emergency departments within 48 h post-injury. Pre-injury and 1-month post-injury symptom ratings were used to classify concussion with or without persistent symptoms based on reliable change. Subjects completed a post-acute (2-33 days) and chronic (3 or 6 months via random assignment) MRI scan. Graph theory metrics were derived from 918 resting-state functional MRI scans in 585 children (386 concussion/199 OI). Linear mixed-effects modeling was performed to assess group differences over time, correcting for multiple comparisons. Relative to OI, the global clustering coefficient was reduced at 3 months post-injury in older children with concussion and in females with concussion and persistent symptoms. Time post-injury and sex moderated group differences in local (regional) network metrics of several brain regions, including degree centrality, efficiency, and clustering coefficient of the angular gyrus, calcarine fissure, cuneus, and inferior occipital, lingual, middle occipital, post-central, and superior occipital gyrus. Relative to OI, degree centrality and nodal efficiency were reduced post-acutely, and nodal efficiency and clustering coefficient were reduced chronically after concussion (i.e., at 3 and 6 months post-injury in females; at 6 months post-injury in males). Functional network alterations were more robust and widespread chronically as opposed to post-acutely after concussion, and varied by sex, age, and symptom recovery at 1-month post-injury. Local network segregation reductions emerged globally (across the whole brain network) in older children and in females with poor recovery chronically after concussion. Reduced functioning between neighboring regions could negatively disrupt specialized information processing. Local network metric alterations were demonstrated in several posterior regions that are involved in vision and attention after concussion relative to OI. This indicates that functioning of superior parietal and occipital regions could be particularly susceptibile to the effects of concussion. Moreover, those regional alterations were especially apparent at later time periods post-injury, emerging after post-concussive symptoms resolved in most and persisted up to 6 months post-injury, and differed by biological sex. This indicates that neurobiological changes continue to occur up to 6 months after pediatric concussion, although changes emerge earlier in females than in males. Changes could reflect neural compensation mechanisms.


Assuntos
Concussão Encefálica , Conectoma , Adolescente , Criança , Feminino , Humanos , Masculino , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Estudos Longitudinais , Estudos Prospectivos
6.
Brain Commun ; 5(3): fcad173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324241

RESUMO

Advanced diffusion-weighted imaging techniques have increased understanding of the neuropathology of paediatric mild traumatic brain injury (i.e. concussion). Most studies have examined discrete white-matter pathways, which may not capture the characteristically subtle, diffuse and heterogenous effects of paediatric concussion on brain microstructure. This study compared the structural connectome of children with concussion to those with mild orthopaedic injury to determine whether network metrics and their trajectories across time post-injury differentiate paediatric concussion from mild traumatic injury more generally. Data were drawn from of a large study of outcomes in paediatric concussion. Children aged 8-16.99 years were recruited from five paediatric emergency departments within 48 h of sustaining a concussion (n = 360; 56% male) or mild orthopaedic injury (n = 196; 62% male). A reliable change score was used to classify children with concussion into two groups: concussion with or without persistent symptoms. Children completed 3 T MRI at post-acute (2-33 days) and/or chronic (3 or 6 months, via random assignment) post-injury follow-ups. Diffusion-weighted images were used to calculate the diffusion tensor, conduct deterministic whole-brain fibre tractography and compute connectivity matrices in native (diffusion) space for 90 supratentorial regions. Weighted adjacency matrices were constructed using average fractional anisotropy and used to calculate global and local (regional) graph theory metrics. Linear mixed effects modelling was performed to compare groups, correcting for multiple comparisons. Groups did not differ in global network metrics. However, the clustering coefficient, betweenness centrality and efficiency of the insula, cingulate, parietal, occipital and subcortical regions differed among groups, with differences moderated by time (days) post-injury, biological sex and age at time of injury. Post-acute differences were minimal, whereas more robust alterations emerged at 3 and especially 6 months in children with concussion with persistent symptoms, albeit differently by sex and age. In the largest neuroimaging study to date, post-acute regional network metrics distinguished concussion from mild orthopaedic injury and predicted symptom recovery 1-month post-injury. Regional network parameters alterations were more robust and widespread at chronic timepoints than post-acutely after concussion. Results suggest that increased regional and local subnetwork segregation (modularity) and inefficiency occurs across time after concussion, emerging after post-concussive symptom resolve in most children. These differences persist up to 6 months after concussion, especially in children who showed persistent symptoms. While prognostic, the small to modest effect size of group differences and the moderating effects of sex likely would preclude effective clinical application in individual patients.

7.
Neurology ; 101(7): e728-e739, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37353339

RESUMO

BACKGROUND AND OBJECTIVES: This prospective, longitudinal cohort study examined trajectories of brain gray matter macrostructure after pediatric mild traumatic brain injury (mTBI). METHODS: Children aged 8-16.99 years with mTBI or mild orthopedic injury (OI) were recruited from 5 pediatric emergency departments. Reliable change between preinjury and 1 month postinjury symptom ratings was used to classify mTBI with or without persistent symptoms. Children completed postacute (2-33 days) and/or chronic (3 or 6 months) postinjury T1-weighted MRI, from which macrostructural metrics were derived using automated segmentation. Linear mixed-effects models were used, with multiple comparisons correction. RESULTS: Groups (N = 623; 407 mTBI/216 OI; 59% male; age mean = 12.03, SD = 2.38 years) did not differ in total brain, white, or gray matter volumes or regional subcortical gray matter volumes. However, time postinjury, age at injury, and biological sex-moderated differences among symptom groups in cortical thickness of the angular gyrus, basal forebrain, calcarine cortex, gyrus rectus, medial and posterior orbital gyrus, and the subcallosal area all corrected p < 0.05. Gray matter macrostructural metrics did not differ between groups postacutely. However, cortical thinning emerged chronically after mTBI relative to OI in the angular gyrus in older children (d [95% confidence interval] = -0.61 [-1.15 to -0.08]); and in the basal forebrain (-0.47 [-0.94 to -0.01]), subcallosal area (-0.55 [-1.01 to -0.08]), and the posterior orbital gyrus (-0.55 [-1.02 to -0.08]) in females. Cortical thinning was demonstrated for frontal and occipital regions 3 months postinjury in males with mTBI with persistent symptoms vs without persistent symptoms (-0.80 [-1.55 to -0.05] to -0.83 [-1.56 to -0.10]) and 6 months postinjury in females and younger children with mTBI with persistent symptoms relative to mTBI without persistent symptoms and OI (-1.42 [-2.29 to -0.45] to -0.91 [-1.81 to -0.01]). DISCUSSION: These findings signal little diagnostic and prognostic utility of postacute gray matter macrostructure in pediatric mTBI. However, mTBI altered the typical course of cortical gray matter thinning up to 6 months postinjury, even after symptoms typically abate in most children. Collapsing across symptom status obscured the neurobiological heterogeneity of discrete clinical outcomes after pediatric mTBI. The results illustrate the need to examine neurobiology in relation to clinical outcomes and within a neurodevelopmental framework.


Assuntos
Concussão Encefálica , Lesões Encefálicas , Feminino , Humanos , Masculino , Criança , Concussão Encefálica/diagnóstico por imagem , Estudos Longitudinais , Estudos Prospectivos , Substância Cinzenta/diagnóstico por imagem , Afinamento Cortical Cerebral
8.
Front Neurosci ; 17: 1105638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937667

RESUMO

Background: Infants born at 29-36 weeks gestational age (GA) are at risk of experiencing neurodevelopmental challenges. We hypothesize that cerebral hemodynamics and oxygen metabolism measured by bedside optical brain monitoring are potential biomarkers of brain development and are associated with neurological examination at term-equivalent age (TEA). Methods: Preterm infants (N = 133) born 29-36 weeks GA and admitted in the neonatal intensive care unit were enrolled in this prospective cohort study. Combined frequency-domain near infrared spectroscopy (FDNIRS) and diffuse correlation spectroscopy (DCS) were used from birth to TEA to measure cerebral hemoglobin oxygen saturation and an index of microvascular cerebral blood flow (CBF i ) along with peripheral arterial oxygen saturation (SpO2). In combination with hemoglobin concentration in the blood, these parameters were used to derive cerebral oxygen extraction fraction (OEF) and an index of cerebral oxygen metabolism (CMRO2i ). The Amiel-Tison and Gosselin Neurological Assessment was performed at TEA. Linear regression models were used to assess the associations between changes in FDNIRS-DCS parameters from birth to TEA and GA at birth. Logistic regression models were used to assess the associations between changes in FDNIRS-DCS parameters from birth to TEA and neurological examination at TEA. Results: Steeper increases in CBF i (p < 0.0001) and CMRO2i (p = 0.0003) were associated with higher GA at birth. Changes in OEF, CBF i , and CMRO2i from birth to TEA were not associated with neurological examination at TEA. Conclusion: In this population, cerebral FDNIRS-DCS parameters were not associated with neurological examination at TEA. Larger increases in CBF i and CMRO2i from birth to TEA were associated with higher GA. Non-invasive bedside FDNIRS-DCS monitoring provides cerebral hemodynamic and metabolic parameters that may complement neurological examination to assess brain development in preterm infants.

9.
Pediatr Radiol ; 53(6): 1153-1162, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36823374

RESUMO

BACKGROUND: Mild traumatic brain injury (mTBI) sustained in early childhood affects the brain at a peak developmental period and may disrupt sensitive stages of skill acquisition, thereby compromising child functioning. However, due to the challenges of collecting non-sedated neuroimaging data in young children, the consequences of mTBI on young children's brains have not been systematically studied. In typically developing preschool children (of age 3-5years), a brief behavioral-play familiarization provides an effective alternative to sedation for acquiring awake magnetic resonance imaging (MRI) in a time- and resource-efficient manner. To date, no study has applied such an approach for acquiring non-sedated MRI in preschool children with mTBI who may present with additional MRI acquisition challenges such as agitation or anxiety. OBJECTIVE: The present study aimed to compare the effectiveness of a brief behavioral-play familiarization for acquiring non-sedated MRI for research purposes between young children with and without mTBI, and to identify factors associated with successful MRI acquisition. MATERIALS AND METHODS: Preschool children with mTBI (n=13) and typically developing children (n=24) underwent a 15-minutes behavioral-play MRI familiarization followed by a 35-minutes non-sedated MRI protocol. Success rate was compared between groups, MRI quality was assessed quantitatively, and factors predicting success were documented. RESULTS: Among the 37 participants, 15 typically developing children (63%) and 10 mTBI (77%) reached the MRI acquisition success criteria (i.e., completing the two first sequences). The success rate was not significantly different between groups (p=.48; 95% CI [-0.36 14.08]; Cramer's V=.15). The images acquired were of high-quality in 100% (for both groups) of the structural images, and 60% (for both groups) of the diffusion images. Factors associated with success included older child age (Β=0.73, p=.007, exp(B)=3.11, 95% CI [1.36 7.08]) and fewer parental concerns (Β=-1.56, p=.02, exp(Β)=0.21, 95% CI [0.05 0.82]) about the MRI procedure. CONCLUSION: Using brief behavioral-play familiarization allows acquisition of high-quality non-sedated MRI in young children with mTBI with success rates comparable to those of non-injured peers.


Assuntos
Concussão Encefálica , Humanos , Pré-Escolar , Criança , Adolescente , Concussão Encefálica/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Ansiedade
10.
Child Neuropsychol ; 29(7): 1088-1108, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36718095

RESUMO

Patients with congenital heart disease (CHD) requiring cardiac surgery in infancy are at high risk for neurodevelopmental impairments. Neonatal imaging studies have reported disruptions of brain functional organization before surgery. Yet, the extent to which functional network alterations are present after cardiac repair remains unexplored. This preliminary study aimed at investigating cortical functional connectivity in 4-month-old infants with repaired CHD, using resting-state functional near-infrared spectroscopy (fNIRS). After fNIRS signal frequency decomposition, we compared values of magnitude-squared coherence as a measure of connectivity strength, between 21 infants with corrected CHD and 31 healthy controls. We identified a subset of connections with differences between groups at an uncorrected statistical level of p < .05 while controlling for sex and maternal socioeconomic status, with most of these connections showing reduced connectivity in infants with CHD. Although none of these differences reach statistical significance after FDR correction, likely due to the small sample size, moderate to large effect sizes were found for group-differences. If replicated, these results would therefore suggest preliminary evidence that alterations of brain functional connectivity are present in the months after cardiac surgery. Additional studies involving larger sample size are needed to replicate our data, and comparisons between pre- and postoperative findings would allow to further delineate alterations of functional brain connectivity in this population.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Cardiopatias Congênitas , Recém-Nascido , Lactente , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Mapeamento Encefálico/métodos , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia
11.
Biomed Opt Express ; 14(12): 6250-6259, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420311

RESUMO

A few-mode optical coherence tomography (FM-OCT) system was developed around a 2 × 1 modally-specific photonic lantern (MSPL) centered at 1310 nm. The MSPL allowed FM-OCT to acquire two coregistered images with uncorrelated speckle patterns generated by their specific coherent spread function. Here, we showed that averaging such images in vitro and in vivo reduced the speckle contrast by up to 28% and increased signal-to-noise ratio (SNR) by up to 48% with negligible impact on image spatial resolution. This method is compatible with other speckle reduction techniques to further improve OCT image quality.

12.
Eur J Paediatr Neurol ; 39: 11-18, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35598572

RESUMO

BACKGROUND: Therapeutic hypothermia (TH) without sedation may lead to discomfort, which may be associated with adverse consequences in neonates with hypoxic-ischemic encephalopathy (HIE). The aim of this study was to assess the association between level of exposure to opioids and temperature, with electroencephalography (EEG) background activity post-TH and magnetic resonance imaging (MRI) brain injury in neonates with HIE. METHODS: Thirty-one neonates with mild-to-moderate HIE who underwent TH were identified. MRIs were reviewed for presence of brain injury. Quantitative EEG background features including EEG discontinuity index and spectral power densities were calculated during rewarming and post-rewarming periods. Dose of opioids administered during TH and temperatures were collected from the medical charts. Multivariable linear and logistic regression analyses were conducted to assess the associations between cumulative dose of opioids and temperature with EEG background and MRI while adjusting for markers of HIE severity. RESULTS: Higher opioid doses (ß = -0.21, p = 0.02) and reduced skin temperature (ß = 0.14, p < 0.01) were associated with lower EEG discontinuity index recorded post-TH. Higher opioid doses (ß = 0.75, p = 0.01) and reduced skin temperature (ß = -0.39, p = 0.02) were also associated with higher EEG Delta power post-TH. MRI brain injury was observed in 14 patients (45%). In adjusted regression analyses, higher opioid doses (OR = 0.00; 95%CI: 0-0.19; p = 0.01), reduced skin temperature (OR = 41.19; 95%CI: 2.27-747.86; p = 0.01) and reduced cooling device output temperature (OR = 1.91; 95%CI: 1.05-3.48; p = 0.04) showed an association with lower odds of brain injury. CONCLUSIONS: Higher level of exposure to opioids and reduced skin temperature during TH in mild-to-moderate HIE were associated with improved EEG background activity post-TH. Moreover, higher exposure to opioids, reduced skin temperature and reduced device output temperature were associated with lower odds of brain injury on MRI.


Assuntos
Analgesia , Lesões Encefálicas , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Analgésicos Opioides/uso terapêutico , Lesões Encefálicas/complicações , Eletroencefalografia/métodos , Humanos , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/terapia , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Temperatura
13.
Hum Brain Mapp ; 43(12): 3809-3823, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35467058

RESUMO

In the largest sample studied to date, white matter microstructural trajectories and their relation to persistent symptoms were examined after pediatric mild traumatic brain injury (mTBI). This prospective, longitudinal cohort study recruited children aged 8-16.99 years with mTBI or mild orthopedic injury (OI) from five pediatric emergency departments. Children's pre-injury and 1-month post-injury symptom ratings were used to classify mTBI with or without persistent symptoms. Children completed diffusion-weighted imaging at post-acute (2-33 days post-injury) and chronic (3 or 6 months via random assignment) post-injury assessments. Mean diffusivity (MD) and fractional anisotropy (FA) were derived for 18 white matter tracts in 560 children (362 mTBI/198 OI), 407 with longitudinal data. Superior longitudinal fasciculus FA was higher in mTBI without persistent symptoms relative to OI, d (95% confidence interval) = 0.31 to 0.37 (0.02, 0.68), across time. In younger children, MD of the anterior thalamic radiations was higher in mTBI with persistent symptoms relative to both mTBI without persistent symptoms, 1.43 (0.59, 2.27), and OI, 1.94 (1.07, 2.81). MD of the arcuate fasciculus, -0.58 (-1.04, -0.11), and superior longitudinal fasciculus, -0.49 (-0.90, -0.09) was lower in mTBI without persistent symptoms relative to OI at 6 months post-injury. White matter microstructural changes suggesting neuroinflammation and axonal swelling occurred chronically and continued 6 months post injury in children with mTBI, especially in younger children with persistent symptoms, relative to OI. White matter microstructure appears more organized in children without persistent symptoms, consistent with their better clinical outcomes.


Assuntos
Concussão Encefálica , Substância Branca , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Criança , Imagem de Tensor de Difusão/métodos , Humanos , Estudos Longitudinais , Estudos Prospectivos , Substância Branca/diagnóstico por imagem
16.
Biomed Opt Express ; 12(9): 5704-5719, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34692210

RESUMO

Optical coherence tomography (OCT) was recently performed using a few-mode (FM) fiber to increase contrast or improve resolution using a sequential time-domain demultiplexing scheme isolating the different interferometric signals of the mode-coupled backscattered light. Here, we present an all-fiber FM-OCT system based on a parallel modal demultiplexing scheme exploiting a novel modally-specific photonic lantern (MSPL). The MSPL allows for maximal fringe visibility for each fiber propagation mode in an all-fiber assembly which provides the robustness required for clinical applications. The custom-built MSPL was designed for OCT at 930 nm and is wavelength-independent over the broad OCT spectrum. We further present a comprehensive coupling model for the interpretation of FM-OCT images using the first two propagation modes of a few-mode fiber, validate its predictions, and demonstrate the technique using in vitro microbead phantoms and ex vivo biological samples.

17.
Invest Ophthalmol Vis Sci ; 62(13): 20, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34698774

RESUMO

Purpose: The purpose of this study was to develop an in vivo optical coherence tomography (OCT) system capable of imaging the developing mouse retina and its associated morphometric and microstructural changes. Methods: Thirty-four wild-type mice (129S1/SvlmJ) were anesthetized and imaged between postnatal (P) day 7 and P21. OCT instrumentation was developed to optimize signal intensity and image quality. Semi-automatic segmentation tools were developed to quantify the retinal thickness of the nerve fiber layer (NFL), inner plexiform layer (IPL), inner nuclear layer (INL), and the outer retinal layers (ORL), in addition to the total retina. The retinal maturation was characterized by comparing layer thicknesses between consecutive time points. Results: From P7 to P10, the IPL increased significantly, consistent with retinal synaptogenesis. From P10 to P12, the IPL and ORL also increased, which is coherent with synaptic connectivity and photoreceptor maturation. In contrast, during these periods, the INL decreased significantly, consistent with cellular densification and selective apoptotic "pruning" of the tissue during nuclear migration. Thereafter from P12 to P21, the INL continued to thin (significantly from P17 to P21) whereas the other layers remained unchanged. No time-dependent changes were observed in the NFL. Overall, changes in the total retina were attributed to those in the IPL, INL, and ORL. Regions of the retina adjacent to the optic nerve head were thinner than distal regions during maturation. Conclusions: Changes in retinal layer thickness are consistent with retinal developmental mechanisms. Accordingly, this report opens new horizons in using our system in the mouse to characterize longitudinally developmental digressions in models of human diseases.


Assuntos
Retina/crescimento & desenvolvimento , Tomografia de Coerência Óptica/métodos , Animais , Camundongos , Modelos Animais , Retina/citologia , Células Ganglionares da Retina/citologia
18.
Dev Neurorehabil ; 24(1): 56-62, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31928274

RESUMO

Purpose: This retrospective study aims to describe the gross motor development of children aged 4 to 24 months with congenital heart disease (CHD) enrolled in a systematic developmental follow-up program and to describe the frequency of physical therapy sessions they received between 4 and 8 months of age. Methods: Twenty-nine infants with CHD underwent motor evaluations using the AIMS at 4 months, and the Bayley-III at 12 and 24 months. Results: Based on AIMS, 79% of 4-month-old infants had a gross motor delay and required physical therapy. Among these, 56.5% received one to two physical therapy sessions, and 43.5% received three to six sessions. Infants who benefited from regular interventions tended to show a better improvement in motor scores from 12 to 24 months. Conclusion: This study highlights the importance of early motor screening in infants with CHD and suggests a potential benefit of early physical therapy in at-risk children. Abbreviations: CHD: Congenital heart disease; AIMS: Alberta Infant Motor Scales; Bayley-III: Bayley Scales of Infant and Toddler Development, Third edition; Bayley-III/GM: Gross Motor section of the Bayley Scales of Infant and Toddler Development, Third edition.


Assuntos
Desenvolvimento Infantil , Deficiências do Desenvolvimento/epidemiologia , Intervenção Médica Precoce/métodos , Cardiopatias Congênitas/terapia , Movimento , Modalidades de Fisioterapia , Pré-Escolar , Feminino , Cardiopatias Congênitas/fisiopatologia , Humanos , Lactente , Recém-Nascido , Masculino
19.
BMJ Open ; 10(10): e040603, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077571

RESUMO

INTRODUCTION: Mild traumatic brain injury (mTBI) is highly prevalent, especially in children under 6 years. However, little research focuses on the consequences of mTBI early in development. The objective of the Kids' Outcomes And Long-term Abilities (KOALA) study is to document the impact of early mTBI on children's motor, cognitive, social and behavioural functioning, as well as on quality of life, stress, sleep and brain integrity. METHODS AND ANALYSES: KOALA is a prospective, multicentre, longitudinal cohort study of children aged 6 months to 6 years at the time of injury/recruitment. Children who sustain mTBI (n=150) or an orthopaedic injury (n=75) will be recruited from three paediatric emergency departments (PEDs), and compared with typically developing children (community controls, n=75). A comprehensive battery of prognostic and outcome measures will be collected in the PED, at 10 days, 1, 3 and 12 months postinjury. Biological measures, including measures of brain structure and function (magnetic resonance imaging, MRI), stress (hair cortisol), sleep (actigraphy) and genetics (saliva), will complement direct testing of function using developmental and neuropsychological measures and parent questionnaires. Group comparisons and predictive models will test the a priori hypotheses that, compared with children from the community or with orthopaedic injuries, children with mTBI will (1) display more postconcussive symptoms and exhibit poorer motor, cognitive, social and behavioural functioning; (2) show evidence of altered brain structure and function, poorer sleep and higher levels of stress hormones. A combination of child, injury, socioenvironmental and psychobiological factors are expected to predict behaviour and quality of life at 1, 3 and 12 months postinjury. ETHICS AND DISSEMINATION: The KOALA study is approved by the Sainte-Justine University Hospital, McGill University Health Centre and University of Calgary Conjoint Health Research Ethics Boards. Parents of participants will provide written consent. Dissemination will occur through peer-reviewed journals and an integrated knowledge translation plan.


Assuntos
Concussão Encefálica , Phascolarctidae , Animais , Concussão Encefálica/diagnóstico , Criança , Pré-Escolar , Estudos de Coortes , Humanos , Estudos Longitudinais , Estudos Prospectivos , Qualidade de Vida
20.
J Neuroimaging ; 29(6): 750-759, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31304656

RESUMO

BACKGROUND AND PURPOSE: There are no published studies examining resting state networks (RSNs) and their relationship with neurodevelopmental metrics in tuberous sclerosis complex (TSC). We aimed to identify major resting-state functional magnetic resonance imaging (rs-fMRI) networks in infants with TSC and correlate network analyses with neurodevelopmental assessments, autism diagnosis, and seizure history. METHODS: Rs-fMRI data from 34 infants with TSC, sedated with propofol during the scan, were analyzed to identify auditory, motor, and visual RSNs. We examined the correlations between auditory, motor, and visual RSNs at approximately 11.5 months, neurodevelopmental outcome at approximately 18.5 months, and diagnosis of autism spectrum disorders at approximately 36 months of age. RESULTS: RSNs were obtained in 76.5% (26/34) of infants. We observed significant negative correlations between auditory RSN and auditory comprehension test scores (p = .038; r = -.435), as well as significant positive correlations between motor RSN and gross motor skills test scores (p = .023; r = .564). Significant positive correlations between motor RSNs and gross motor skills (p = .012; r = .754) were observed in TSC infants without autism, but not in TSC infants with autism, which could suggest altered motor processing. There were no significant differences in RSNs according to seizure history. CONCLUSIONS: Negative correlation between auditory RSN, as well as positive correlation between motor RSN and developmental outcome measures might reflect different brain mechanisms and, when identified, may be helpful in predicting later function. A larger study of TSC patients with a healthy control group is needed before auditory and motor RSNs could be considered as neurodevelopmental outcome biomarkers.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Esclerose Tuberosa/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Mapeamento Encefálico/métodos , Pré-Escolar , Feminino , Neuroimagem Funcional , Humanos , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA