Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Gene ; 916: 148424, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38588933

RESUMO

The most significant factors that lead to cancer-related death in breast cancer (BC) patients include drug resistance, migration, invasion, and metastasis. Several signaling pathways are involved in the development of BC. The different types of BC are initially sensitive to chemotherapy, and drug resistance can occur through multiple molecular mechanisms. Regardless of developing targeted Therapy, due to the heterogenic nature and complexity of drug resistance, it is a major clinical challenge with the low survival rate in BC patients. The deregulation of several signaling pathways, particularly the Hippo pathway (HP), is one of the most recent findings about the molecular mechanisms of drug resistance in BC, which are summarized in this review. Given that HP is one of the recent cancer research hotspots, this review focuses on its implication in BC drug resistance. Unraveling the different molecular basis of HP through its crosstalk with other signaling pathways, and determining the effectiveness of HP inhibitors can provide new insights into possible therapeutic strategies for overcoming chemoresistance in BC.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Via de Sinalização Hippo , Feminino , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
2.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119686, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342310

RESUMO

BACKGROUND: Understanding the genetic underpinnings of protein networks conferring stemness is of broad interest for basic and translational research. METHODS: We used multi-omics analyses to identify and characterize stemness genes, and focused on the zinc finger protein 982 (Zfp982) that regulates stemness through the expression of Nanog, Zfp42, and Dppa3 in mouse embryonic stem cells (mESC). RESULTS: Zfp982 was expressed in stem cells, and bound to chromatin through a GCAGAGKC motif, for example near the stemness genes Nanog, Zfp42, and Dppa3. Nanog and Zfp42 were direct targets of ZFP982 that decreased in expression upon knockdown and increased upon overexpression of Zfp982. We show that ZFP982 expression strongly correlated with stem cell characteristics, both on the transcriptional and morphological levels. Zfp982 expression decreased with progressive differentiation into ecto-, endo- and mesodermal cell lineages, and knockdown of Zfp982 correlated with morphological and transcriptional features of differentiated cells. Zfp982 showed transcriptional overlap with members of the Hippo signaling pathway, one of which was Yap1, the major co-activator of Hippo signaling. Despite the observation that ZFP982 and YAP1 interacted and localized predominantly to the cytoplasm upon differentiation, the localization of YAP1 was not influenced by ZFP982 localization. CONCLUSIONS: Together, our study identified ZFP982 as a transcriptional regulator of early stemness genes, and since ZFP982 is under the control of the Hippo pathway, underscored the importance of the context-dependent Hippo signals for stem cell characteristics.


Assuntos
Células-Tronco Embrionárias Murinas , Fatores de Transcrição , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38090859

RESUMO

In the last few decades, DNA-based self-assembly tiles has become a hot field in research due to its special applications and advantages. The regularity and strong design methods comprise other DNA-based digital circuit design methods. In addition to the obvious advantages of this method, there are challenges in performing computations based on self-assembly tiles, which have hindered the development and construction of large computing circuits with this method. The first challenge is the creation of crystals from DNA molecules in the output, which has led to the impossibility of cascading. The second challenge of this method is the uncontrollability of the reactions of the tiles, which increases the percentage of computing errors. In this article, these two challenges have been solved by changing the structure of leading tiles so that without the activator strand, tiles remain inactive and cannot be connected to other tiles. Also, when the tiles are activated, single-strand DNA will be released after connecting to other tiles, which will be used as the output of the circuit. This output gives the possibility of cascading to self-assembly designed circuits. The method introduced in this article can be a beginning for the re-development of DNA-based circuit design with the self-assembly tile method.

4.
Mol Biol Rep ; 50(2): 949-959, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36376536

RESUMO

BACKGROUND: Host genetic characteristics and environmental factors interactions may play a crucial role in cervical carcinogenesis. We investigated the impact of functional genetic variants of four xenobiotic-metabolizing genes (AhR, CYP1A1, GSTM1, and GSTT1) on cervical cancer development in Tunisian women. METHODS: The AhR gene polymorphism was analyzed using the tetra-primer ARMS-PCR, whereas the CYP1A1 polymorphism genotypes were identified by PCR-RFLP. A multiplex ligation-dependent polymerase chain reaction approach was applied for the analysis of GSTM1 and GSTT1 polymorphisms. RESULTS: The homozygous A/A genotype of the AhR gene (rs2066853) and the heterozygous T/C genotype of the CYP1A1 SNP (CYP1A1-MspI) appeared to be associated with an increased risk of cervical tumorigenesis (ORa = 2.81; ORa = 5.52, respectively). Furthermore, a significantly increased risk of cervical cancer was associated with the GSTT1 null genotype (ORa = 2.65). However, the null GSTM1 genotype showed any significant association with the risk of cervical cancer compared to the wild genotype (ORa = 1.18; p = 0.784). Considering the combined effect, we noted a significantly higher association with cancer risk for individuals with at least two high-risk genotypes of CYP1A1/GSTT1 (ORa = 4.2), individuals with at least two high-risk genotypes of CYP1A1/GSTT1/AhR (ORa = 11.3) and individuals with at least two high-risk genotypes of CYP1A1/GSTM1/GSTT1/AhR exploitation low-risk genotype as a reference. CONCLUSION: This study indicated that the single-gene contribution and the combined effect of xenobiotic-metabolizing gene polymorphisms (AhR, CYP1A1-MspI, GSTM1, and GSTT1) may have a considerable association with increased cervical cancer risk.


Assuntos
Citocromo P-450 CYP1A1 , Neoplasias do Colo do Útero , Humanos , Feminino , Citocromo P-450 CYP1A1/genética , Neoplasias do Colo do Útero/genética , Xenobióticos , Polimorfismo Genético , Glutationa Transferase/genética , Genótipo , Predisposição Genética para Doença , Fatores de Risco , Estudos de Casos e Controles
5.
Front Vet Sci ; 9: 974444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968017

RESUMO

Johne's disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) is a major concern in dairy industry. Since, the pathogenesis of the disease is not clearly known, it is necessary to develop an approach to discover molecular mechanisms behind this disease with high confidence. Biological studies often suffer from issues with reproducibility. Lack of a method to find stable modules in co-expression networks from different datasets related to Johne's disease motivated us to present a computational pipeline to identify non-preserved consensus modules. Two RNA-Seq datasets related to MAP infection were analyzed, and consensus modules were detected and were subjected to the preservation analysis. The non-preserved consensus modules in both datasets were determined as they are modules whose connectivity and density are affected by the disease. Long non-coding RNAs (lncRNAs) and TF genes in the non-preserved consensus modules were identified to construct integrated networks of lncRNA-mRNA-TF. These networks were confirmed by protein-protein interactions (PPIs) networks. Also, the overlapped hub genes between two datasets were considered hub genes of the consensus modules. Out of 66 consensus modules, 21 modules were non-preserved consensus modules, which were common in both datasets and 619 hub genes were members of these modules. Moreover, 34 lncRNA and 152 TF genes were identified in 12 and 19 non-preserved consensus modules, respectively. The predicted PPIs in 17 non-preserved consensus modules were significant, and 283 hub genes were commonly identified in both co-expression and PPIs networks. Functional enrichment analysis revealed that eight out of 21 modules were significantly enriched for biological processes associated with Johne's disease including "inflammatory response," "interleukin-1-mediated signaling pathway", "type I interferon signaling pathway," "cytokine-mediated signaling pathway," "regulation of interferon-beta production," and "response to interferon-gamma." Moreover, some genes (hub mRNA, TF, and lncRNA) were introduced as potential candidates for Johne's disease pathogenesis such as TLR2, NFKB1, IRF1, ATF3, TREM1, CDH26, HMGB1, STAT1, ISG15, CASP3. This study expanded our knowledge of molecular mechanisms involved in Johne's disease, and the presented pipeline enabled us to achieve more valid results.

6.
J Cell Mol Med ; 26(16): 4530-4547, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35810383

RESUMO

Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent evidence shows the critical role of epithelial-mesenchymal transition (EMT) in this resistance. Epithelial-like ovarian cancer cells show decreased sensitivity to cisplatin after cisplatin treatment. Our study prospected the association between epithelial phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 was acquired from the GEO database. After identifying differentially expressed genes (DEGs) between epithelial-like and mesenchymal-like cells, the module identification analysis was performed using weighted gene co-expression network analysis (WGCNA). The gene ontology (GO) and pathway analyses of the most considerable modules were performed. The protein-protein interaction network was also constructed. The hub genes were specified using Cytoscape plugins MCODE and cytoHubba, followed by the survival analysis and data validation. Finally, the co-expression of miRNA-lncRNA-TF with the hub genes was reconstructed. The co-expression network analysis suggests 20 modules relating to the Epithelial phenotype. The antiquewhite4, brown and darkmagenta modules are the most significant non-preserved modules in the Epithelial phenotype and contain the most differentially expressed genes. GO, and KEGG pathway enrichment analyses on these modules divulge that these genes were primarily enriched in the focal adhesion, DNA replication pathways and stress response processes. ROC curve and overall survival rate analysis show that the co-expression pattern of the brown module's hub genes could be a potential prognostic biomarker for ovarian cancer cisplatin resistance.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Transição Epitelial-Mesenquimal/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética
7.
J Diabetes Investig ; 13(3): 405-428, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34859606

RESUMO

Type 2 diabetes is known as a risk factor for pancreatic cancer (PC). Various genetic and environmental factors cause both these global chronic diseases. The mechanisms that define their relationships are complex and poorly understood. Recent studies have implicated that metabolic abnormalities, including hyperglycemia and hyperinsulinemia, could lead to cell damage responses, cell transformation, and increased cancer risk. Hence, these kinds of abnormalities following molecular events could be essential to develop our understanding of this complicated link. Among different molecular events, focusing on shared signaling pathways including metabolic (PI3K/Akt/mTOR) and mitogenic (MAPK) pathways in addition to regulatory mechanisms of gene expression such as those involved in non-coding RNAs (miRNAs, circRNAs, and lncRNAs) could be considered as powerful tools to describe this association. A better understanding of the molecular mechanisms involved in the development of type 2 diabetes and pancreatic cancer would help us to find a new research area for developing therapeutic and preventive strategies. For this purpose, in this review, we focused on the shared molecular events resulting in type 2 diabetes and pancreatic cancer. First, a comprehensive literature review was performed to determine similar molecular pathways and non-coding RNAs; then, the final results were discussed in more detail.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Humanos , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante/genética , Serina-Treonina Quinases TOR
8.
Sci Rep ; 11(1): 19260, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584155

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory and autoimmune disorder of the central nervous system characterized by myelin loss and axonal dysfunction. Increased production of inflammatory factors such as cytokines has been implicated in axon destruction. In the present study, we compared the expression level of IL7R, NFATc2, and RNF213 genes in the peripheral blood of 72 MS patients (37 familial MS, 35 sporadic MS) and 74 healthy controls (34 individuals with a family history of the disease, 40 healthy controls without a family history) via Real-time PCR. Our results showed that the expression level of IL7R was decreased in the sporadic patients in comparison with other groups. Additionally, there was an increased NFATc2 expression level in MS patients versus healthy controls. Increased expression of NFATc2 in sporadic and familial groups compared to the controls, and familial group versus FDR was also seen. Our results also represented an increased expression level of RNF213 in familial patients as compared to the control group. The similar RNF213 expression between sporadic and control group, as well as FDR and familial group was also seen. Diagnostic evaluation was performed by receiver operating characteristic (ROC) curve analysis and area under the curve (AUC) calculation. The correlation of clinical parameters including onset age and Expanded Disability Status Scale (EDSS) with our gene expression levels were also assessed. Overall, decreased expression level of IL7R in the sporadic cases and increased expression level of NFATc2 may be associated with the pathogenesis of MS disease. Confirmation of the effects of differential expression of RNF213 gene requires further studies in the wider statistical populations.


Assuntos
Adenosina Trifosfatases/metabolismo , Predisposição Genética para Doença , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Esclerose Múltipla/genética , Fatores de Transcrição NFATC/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adulto , Idade de Início , Biomarcadores/sangue , Biomarcadores/metabolismo , Estudos de Casos e Controles , Avaliação da Deficiência , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Voluntários Saudáveis , Humanos , Subunidade alfa de Receptor de Interleucina-7/sangue , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/imunologia , Fatores de Transcrição NFATC/sangue
9.
Sci Rep ; 11(1): 16593, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400727

RESUMO

In recent years, many strategies have been used to overcome the fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors (TKIs) resistance caused by different mutations. LY2874455 (or 6LF) is a pan-FGFR inhibitor which is identified as the most efficient TKI for all resistant mutations in FGFRs. Here, we perform a comparative dynamics study of wild type (WT) and the FGFR4 V550L mutant for better understanding of the 6LF inhibition mechanism. Our results confirm that the pan-FGFR inhibitor 6LF can bind efficiently to both WT and V550L FGFR4. Moreover, the communication network analysis indicates that in apo-WT FGFR4, αD-αE loop behaves like a switch between open and close states of the substrate-binding pocket in searching of its ligand. In contrast, V550L mutation induces the active conformation of the FGFR4 substrate-binding pocket through disruption of αD-αE loop and αG helix anti-correlation. Interestingly, 6LF binding causes the rigidity of hinge and αD helix regions, which results in overcoming V550L induced resistance. Collectively, the results of this study would be informative for designing more efficient TKIs for more effective targeting of the FGFR signaling pathway.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indazóis/farmacologia , Proteínas de Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Substituição de Aminoácidos , Sítios de Ligação , Resistencia a Medicamentos Antineoplásicos/genética , Entropia , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Mutação Puntual , Conformação Proteica , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/química , Relação Estrutura-Atividade , Especificidade por Substrato
10.
Front Genet ; 12: 668448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290737

RESUMO

Johne's disease is a chronic infection of ruminants that burdens dairy herds with a significant economic loss. The pathogenesis of the disease has not been revealed clearly due to its complex nature. In order to achieve deeper biological insights into molecular mechanisms involved in MAP infection resulting in Johne's disease, a system biology approach was used. As far as is known, this is the first study that considers lncRNAs, TFs, and mRNAs, simultaneously, to construct an integrated gene regulatory network involved in MAP infection. Weighted gene coexpression network analysis (WGCNA) and functional enrichment analysis were conducted to explore coexpression modules from which nonpreserved modules had altered connectivity patterns. After identification of hub and hub-hub genes as well as TFs and lncRNAs in the nonpreserved modules, integrated networks of lncRNA-mRNA-TF were constructed, and cis and trans targets of lncRNAs were identified. Both cis and trans targets of lncRNAs were found in eight nonpreserved modules. Twenty-one of 47 nonpreserved modules showed significant biological processes related to the immune system and MAP infection. Some of the MAP infection's related pathways in the most important nonpreserved modules comprise "positive regulation of cytokine-mediated signaling pathway," "negative regulation of leukocyte migration," "T-cell differentiation," "neutrophil activation," and "defense response." Furthermore, several genes were identified in these modules, including SLC11A1, MAPK8IP1, HMGCR, IFNGR1, CMPK2, CORO1A, IRF1, LDLR, BOLA-DMB, and BOLA-DMA, which are potentially associated with MAP pathogenesis. This study not only enhanced our knowledge of molecular mechanisms behind MAP infection but also highlighted several promising hub and hub-hub genes involved in macrophage-pathogen interaction.

11.
Sci Rep ; 11(1): 8618, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883592

RESUMO

Quercetin (QC) is a dietary bioflavonoid that can be conjugated with nanoparticles to facilitate its brain bioavailability. We previously showed that quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) reduced the level of blood glucose in diabetic rats. Glucose transporters (GLUTs), insulin-like growth factor-1 (IGF-1), and microRNA-29 (miR-29) play a critical role in brain glucose homeostasis. In the current study, we examined the effects of QCSPION on the expression of glucose metabolism-related genes, and the miR-29 family as a candidate regulator of glucose handling in the hippocampus of diabetic rats. Our in silico analyses introduce the miR-29 family as potential regulators of glucose transporters and IGF-1 genes. The expression level of the miR-29 family, IGF-1, GLUT1, GLUT2, GLUT3, and GLUT4 were measured by qPCR. Our results indicate that diabetes significantly results in upregulation of the miR-29 family and downregulation of the GLUT1, 2, 3, 4, and IGF-1 genes. Interestingly, QCSPIONs reduced miR-29 family expression and subsequently enhanced GLUT1, 2, 3, 4, and IGF-1expression. In conclusion, our findings suggest that QCSPION could regulate the expression of the miR-29 family, which in turn increases the expression of glucose transporters and IGF-1, thereby reducing diabetic complications.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Glucose/genética , Glucose/metabolismo , Hipocampo/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , MicroRNAs/genética , Quercetina/farmacologia , Animais , Diabetes Mellitus Experimental/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Proteínas Facilitadoras de Transporte de Glucose/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/genética , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/genética , Masculino , Ratos , Ratos Wistar , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
12.
Sci Rep ; 11(1): 7713, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833274

RESUMO

Alterations in the regulatory mechanisms that control the process of myelination in the nervous system, may lead to the impaired myelination in the Multiple sclerosis. The Hippo pathway is an important mediator of myelination in the nervous system and might contribute to the pathophysiology of MS. This study examined via qPCR the RNA expression of YAP1, TAZ, and CRB3 as the key effectors of the Hippo pathway and also, VDR in the peripheral blood of 35 sporadic, 37 familial MS patients; and also 34 healthy first-degree relatives of the familial MS patients (HFR) and 40 healthy individuals without a family history of the disease (control). The results showed the increased expression of VDR in the sporadic group, as compared to other groups. There was also an increased expression of TAZ in the familial and HFR groups, as compared to the control group. The familial and sporadic patients displayed a significantly lower level of expression of YAP1 in comparison to the HFR group. The increased expression level in the sporadic patients and control group, as compared to the HFR group, was seen in CRB3. We also assessed different clinical parameters and MRI characteristics of the patients. Overall, these findings suggest that Hippo pathway effectors and also VDR gene may play a potential role in the pathophysiology of the sporadic and familial forms of MS. Confirmation of different gene expression patterns in sporadic and familial MS groups may have obvious implications for the personalization of therapies in the disease.


Assuntos
Perfilação da Expressão Gênica , Esclerose Múltipla/genética , Fatores de Transcrição/genética , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Irã (Geográfico) , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/classificação , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/etnologia , Reação em Cadeia da Polimerase em Tempo Real
13.
Front Cell Neurosci ; 15: 803272, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087379

RESUMO

The development of dopaminergic (DA) neurons is a very complex process, and a combination of extrinsic and intrinsic factors involves their differentiation. Transcription factor, Nurr1 plays an essential role in the differentiation and maintenance of midbrain DA neurons. Nurr1-based therapies may restore DA function in Parkinson's disease (PD) by replacing damaged cells with differentiated cells derived from stem cells. Providing tissue-specific microenvironments such as brain extract can effectively induce dopaminergic gene expression in stem cells. The present study aimed to investigate the combined effects of Nurr1 gene overexpression and a neonatal rat brain extract (NRBE) induction on dopaminergic differentiation of P19 stem cells. In order to neural differentiation induction, stably Nurr1-transfected cells were treated with 100 µg/ml of NRBE. The differentiation potential of the cells was then evaluated during a period of 1-3 weeks via various methods. The initial evaluation of the cells by direct observation under a light microscope and cresyl violet specific staining, confirmed neuron-like morphology in the differentiated cells. In addition, different molecular and cellular techniques, including real-time PCR, immunofluorescence, and flow cytometry, demonstrated that the treated cells expressed pan-neuronal and dopaminergic markers. In all experimental groups, neuronal phenotype with dopaminergic neuron-like cells characteristics mainly appeared in the second week of the differentiation protocol. Overall, the results of the present study revealed for the first time the synergistic effects of Nurr1 gene overexpression and possible soluble factors that existed in NRBE on the differentiation of P19 stem cells into dopaminergic neuron-like cells.

14.
Sci Rep ; 10(1): 15070, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934245

RESUMO

Quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) have an ameliorative effect on diabetes-induced memory impairment. The current study aimed to compare the effect of quercetin (QC) and QCSPIONs on inflammation-related microRNAs and NF-κB signaling pathways in the hippocampus of diabetic rats. The expression levels of miR-146a, miR-9, NF-κB, and NF-κB-related downstream genes, including TNF-α, BACE1, AßPP, Bax, and Bcl-2 were measured using quantitative real-time PCR. To determine the NF-κB activity, immunohistochemical expression of NF-κB/p65 phosphorylation was employed. Computer simulated docking analysis also performed to find the QC target proteins involved in the NF-κB pathway. Results indicate that diabetes significantly upregulated the expression levels of miR-146a, miR-9, TNF-α, NF-κB, and subsequently AßPP, BACE1, and Bax. Expression analysis shows that QCSPIONs are more effective than pure QC in reducing the expression of miR-9. Interestingly, QCSPIONs reduce the pathological activity of NF-κB and subsequently normalize BACE1, AßPP, and the ratio of Bax/Bcl-2 expression better than pure QC. Comparative docking analyses also show the stronger binding affinity of QC to IKK and BACE1 proteins compared to specific inhibitors of each protein. In conclusion, our study suggests the potent efficacy of QCSPIONs as a promising drug delivery system in memory improvement through targeting the NF-κB pathway.


Assuntos
Sistemas de Liberação de Medicamentos , Hipocampo/metabolismo , Aprendizagem/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/química , Memória/efeitos dos fármacos , MicroRNAs , NF-kappa B , Quercetina , Transdução de Sinais/efeitos dos fármacos , Animais , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Quercetina/química , Quercetina/farmacologia , Ratos , Ratos Wistar
15.
PLoS One ; 15(6): e0234317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555744

RESUMO

We investigated the physiological and proteomic changes in the leaves of three Lolium perenne genotypes, one Iranian putative self-pollinating genotype named S10 and two commercial genotypes of Vigor and Speedy, subjected to drought stress conditions. The results of this study indeed showed higher RWC (relative water content), SDW (shoot dry weight), proline, ABA (abscisic acid), nitrogen and amino acid contents, and antioxidant enzymes activities of S10 under drought stress in comparison with the two other genotypes. A total of 915 proteins were identified using liquid chromatography-mass spectrometry (LC/MS) analysis, and the number of differentially abundant proteins between normal and stress conditions was 467, 456, and 99 in Vigor, Speedy, and S10, respectively. Proteins involved in carbon and energy metabolism, photosynthesis, TCA cycle, redox, and transport categories were up-regulated in the two commercial genotypes. We also found that some protein inductions, including those involved in amino acid and ABA metabolisms, aquaporin, HSPs, photorespiration, and increases in the abundance of antioxidant enzymes, are essential responses of the two commercial genotypes to drought stress. In contrast, we observed only slight changes in the protein profile of the S10 genotype under drought stress. Higher homozygosity due to self-pollination in the genetic background of the S10 genotype may have led to a lower variation in response to drought stress conditions.


Assuntos
Lolium/genética , Lolium/metabolismo , Secas , Genótipo , Irã (Geográfico) , Fotossíntese , Fisiologia Comparada/métodos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Polinização , Proteômica/métodos , Estresse Fisiológico/genética , Água/metabolismo
16.
Biochem Biophys Res Commun ; 524(2): 405-410, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32007270

RESUMO

Deoxyribozymes or DNAzyme are identified as catalytic DNA sequences which catalyze different chemical reactions. Ligating deoxyribozymes catalyze the formation of branched and linear products. Due to the lack of efficient read-out systems, there is no report on in vivo application of ligating deoxyribozymes. To expand the biological application of branched-RNA forming deoxyribozymes, we performed our study in order to suggest a practical toolkit for measurement of in vivo real-time activity of ligating deoxyribozymes. Further in vitro studies were designed to analyze the effects of the location of branch site on reverse transcriptase (RT) interference. With this toolkit even the activity of RT was measured precisely. Our results indicate that the activity of RT enzyme significantly affected by a 17 nt branched adaptor synthesized by 10DM24 ligating deoxyribozyme. The RT stalls at or near the RNA branch point during both initiation and elongation phases. The DNA synthesis is decreased 4.3 and 2.7 fold during initiation and elongation phases respectively. In conclusion, we introduce a general and practical toolkit called "DMLR" which is based on Real-time PCR method. The use of DMLR precisely determines RT behavior when encountered with any backbone modification with the ability of stopping the enzyme activity.


Assuntos
DNA Catalítico/química , RNA/química , DNA Catalítico/genética , DNA Complementar/química , DNA Complementar/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA/genética , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa , Proteínas Virais/química , Proteínas Virais/genética
17.
Arch Med Res ; 50(3): 79-85, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31495393

RESUMO

BACKGROUND: Type 1 diabetes (T1D) is a multifactorial disease identified by a deficiency in the production of insulin. MicroRNAs (miRNAs) are identified as important epigenetic regulators in T1D. Many studies highlight the differential expression of these small non-coding molecules in the pathogenesis of T1D. AIM OF THE STUDY: In the present study, the expression pattern of miR-21, miR-155 and miR-338 were analyzed in the peripheral blood mononuclear cells (PBMCs) of T1D patients compared to healthy controls. METHODS: The expression levels of miR-21, miR-155 and miR-338 were measured in the PBMCs of 30 T1D patients and 11 healthy controls by real time PCR method. The final results were statistically analyzed and ROC curves were created for miRNAs with significant differential expression. RESULTS: Both miR-155 (p value: 0.021) and miR-21 (p value: 0.05) were upregulated in the PBMCs of T1D patients compared to healthy controls. There was no significant difference in the expression level of miR-338 between patients and controls. Furthermore, ROC curve analysis was performed for miR-21 (AUC: 0.65) and miR-155 (AUC: 0.73) which suggests the potential role of miR-155 as a biomarker in T1D patients. Using integrative computational analysis, a number of dysregulated miR155-mRNA and miR21-mRNA interactions were also suggested. CONCLUSION: Our findings suggest the significant association between the expression levels of miR-21 and miR-155 with T1D. In addition, miR-155 (AUC: 0.73) could be considered as a possible biomarker to track disease in T1D patients.


Assuntos
Diabetes Mellitus Tipo 1/genética , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 1/sangue , Feminino , Humanos , Insulina/metabolismo , Masculino , MicroRNAs/biossíntese , RNA Mensageiro/metabolismo , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
18.
Dev Neurobiol ; 79(6): 559-577, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31177638

RESUMO

A large number of studies have focused on the generation of dopaminergic neurons from pluripotent cells. Differentiation of stem cells into distinct cell types is influenced by tissue-specific microenvironment. Since, central nervous system undergoes further development during postnatal life, in the present study neonatal rat brain tissue extract (NRBE) was applied to direct the differentiation of embryonal carcinoma stem cell line, P19 into dopaminergic (DA) phenotypes. Additionally, a neuroprotective drug, deprenyl was used alone or in combination with the extract. Results from morphological, immunofluorescence, and qPCR analyses showed that during a period of one to three weeks, a large percentage of stem cells were differentiated into neural cells. The results also indicated the greater effect of NRBE on the differentiation of the cells into tyrosine hydroxylase-expressing cells. MS analysis of NRBE showed the enrichment of gene ontology terms related to cell differentiation and neurogenesis. Network analysis of the studied genes and some DA markers resulted in the suggestion of potential regulatory candidates such as AVP, ACHE, LHFPL5, and DLK1 genes. In conclusion, NRBE as a natural native inducer was apparently able to simulate the brain microenvironment and support neural differentiation of P19 cells.


Assuntos
Células-Tronco de Carcinoma Embrionário/efeitos dos fármacos , Células-Tronco de Carcinoma Embrionário/enzimologia , Regulação Enzimológica da Expressão Gênica , Selegilina/farmacologia , Tirosina 3-Mono-Oxigenase/biossíntese , Animais , Animais Recém-Nascidos , Células Cultivadas , Inibidores da Monoaminoxidase/farmacologia , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/genética
19.
Genomics ; 111(4): 831-839, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29775782

RESUMO

The Hippo signaling pathway is identified as a potential regulatory pathway which plays critical roles in differentiation and stem cell self-renewal. Yap1 is a primary transcriptional effector of this pathway. The importance of Yap1 in embryonic stem cells (ESCs) and differentiation procedure remains a challenging question, since two different observations have been reported. To answer this question we used co-expression network and differential co-expression analyses followed by experimental validations. Our results indicate that Yap1 is highly co-expressed with stem cell markers in ESCs but not in differentiated cells (DCs). The significant Yap1 down-regulation and also translocation of Yap1 into the cytoplasm during P19 differentiation was also detected. Moreover, our results suggest the E2f7, Lin28a and Dppa4 genes as possible regulatory nuclear factors of Hippo pathway in stem cells. The present findings are actively consistent with studies that suggested Yap1 as an essential factor for stem cell self-renewal.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular , Fator de Transcrição E2F7/genética , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Fator de Transcrição E2F7/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
20.
Front Cell Neurosci ; 12: 448, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555301

RESUMO

Heterogeneous astrocyte populations are defined by diversity in cellular environment, progenitor identity or function. Yet, little is known about the extent of the heterogeneity and how this diversity is acquired during development. To investigate the impact of TGF (transforming growth factor) ß-signaling on astrocyte development in the telencephalon we deleted the TGFBR2 (transforming growth factor beta receptor 2) in early neural progenitor cells in mice using a FOXG1 (forkhead box G1)-driven CRE-recombinase. We used quantitative proteomics to characterize TGFBR2-deficient cells derived from the mouse telencephalon and identified differential protein expression of the astrocyte proteins GFAP (glial fibrillary acidic protein) and MFGE8 (milk fat globule-EGF factor 8). Biochemical and histological investigations revealed distinct populations of astrocytes in the dorsal and ventral telencephalon marked by GFAP or MFGE8 protein expression. The two subtypes differed in their response to TGFß-signaling. Impaired TGFß-signaling affected numbers of GFAP astrocytes in the ventral telencephalon. In contrast, TGFß reduced MFGE8-expression in astrocytes deriving from both regions. Additionally, lineage tracing revealed that both GFAP and MFGE8 astrocyte subtypes derived partly from FOXG1-expressing neural precursor cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA