Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 31(11): 1404-1426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36876847

RESUMO

Heart failure (HF) is a public health issue that imposes high costs on healthcare systems. Despite the significant advances in therapies and prevention of HF, it remains a leading cause of morbidity and mortality worldwide. The current clinical diagnostic or prognostic biomarkers, as well as therapeutic strategies, have some limitations. Genetic and epigenetic factors have been identified to be central to the pathogenesis of HF. Therefore, they might provide promising novel diagnostic and therapeutic approaches for HF. Long non-coding RNAs (lncRNAs) belong to a group of RNAs that are produced by RNA polymerase II. These molecules play an important role in the functioning of different cell biological processes, such as transcription and regulation of gene expression. LncRNAs can affect different signaling pathways by targeting biological molecules or a variety of different cellular mechanisms. The alteration in their expression has been reported in different types of cardiovascular diseases, including HF, supporting the theory that they are important in the development and progression of heart diseases. Therefore, these molecules can be introduced as diagnostic, prognostic, and therapeutic biomarkers in HF. In this review, we summarize different lncRNAs as diagnostic, prognostic, and therapeutic biomarkers in HF. Moreover, we highlight various molecular mechanisms dysregulated by different lncRNAs in HF.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Cardiomegalia/diagnóstico , Cardiomegalia/genética , Cardiomegalia/patologia , Doenças Cardiovasculares/diagnóstico , Biomarcadores
2.
Cell Mol Neurobiol ; 43(7): 3277-3299, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37414973

RESUMO

MicroRNAs (miRNAs) are non-coding RNAs with only 20-22 nucleic acids that inhibit gene transcription and translation by binding to mRNA. MiRNAs have a diverse set of target genes and can alter most physiological processes, including cell cycle checkpoints, cell survival, and cell death mechanisms, affecting the growth, development, and invasion of various cancers, including gliomas. So optimum management of miRNA expression is essential for preserving a normal biological environment. Due to their small size, stability, and capability of specifically targeting oncogenes, miRNAs have emerged as a promising marker and new biopharmaceutical targeted therapy for glioma patients. This review focuses on the most common miRNAs associated with gliomagenesis and development by controlling glioma-determining markers such as angiogenesis. We also summarized the recent research about miRNA effects on signaling pathways, their mechanistic role and cellular targets in the development of gliomas angiogenesis. Strategies for miRNA-based therapeutic targets, as well as limitations in clinical applications, are also discussed.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/terapia , Glioma/metabolismo , Transdução de Sinais/genética , Oncogenes , Regulação Neoplásica da Expressão Gênica
3.
Front Pharmacol ; 14: 1152672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153758

RESUMO

Breast cancer (BC) is the most common malignancy among women worldwide. Like many other cancers, BC therapy is challenging and sometimes frustrating. In spite of the various therapeutic modalities applied to treat the cancer, drug resistance, also known as, chemoresistance, is very common in almost all BCs. Undesirably, a breast tumor might be resistant to different curative approaches (e.g., chemo- and immunotherapy) at the same period of time. Exosomes, as double membrane-bound extracellular vesicles 1) secreted from different cell species, can considerably transfer cell products and components through the bloodstream. In this context, non-coding RNAs (ncRNAs), including miRNAs, long ncRNAs (lncRNAs), and circular RNAs (circRNAs), are a chief group of exosomal constituents with amazing abilities to regulate the underlying pathogenic mechanisms of BC, such as cell proliferation, angiogenesis, invasion, metastasis, migration, and particularly drug resistance. Thereby, exosomal ncRNAs can be considered potential mediators of BC progression and drug resistance. Moreover, as the corresponding exosomal ncRNAs circulate in the bloodstream and are found in different body fluids, they can serve as foremost prognostic/diagnostic biomarkers. The current study aims to comprehensively review the most recent findings on BC-related molecular mechanisms and signaling pathways affected by exosomal miRNAs, lncRNAs, and circRNAs, with a focus on drug resistance. Also, the potential of the same exosomal ncRNAs in the diagnosis and prognosis of BC will be discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA