Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Transplant ; 23(8): 1171-1181, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37019335

RESUMO

The blockade of the CD154-CD40 pathway with anti-CD154 monoclonal antibody has been a promising immunomodulatory approach to prevent allograft rejection. However, clinical trials of immunoglobulin G1 antibodies targeting this pathway revealed thrombogenic properties, which were subsequently shown to be mediated by crystallizable fragment (Fc)-gamma receptor IIa-dependent platelet activation. To prevent thromboembolic complications, an immunoglobulin G4 anti-CD154 monoclonal antibody, TNX-1500, which retains the fragment antigen binding region of ruplizumab (humanized 5c8, BG9588), was modified by protein engineering to decrease Fc binding to Fc-gamma receptor IIa while retaining certain other effector functions and pharmacokinetics comparable with natural antibodies. Here, we report that TNX-1500 treatment is not associated with platelet activation in vitro and consistently inhibits kidney allograft rejection in vivo without clinical or histologic evidence of prothrombotic phenomena. We conclude that TNX-1500 retains efficacy similar to that of 5c8 to prevent kidney allograft rejection while avoiding previously identified pathway-associated thromboembolic complications.


Assuntos
Transplante de Rim , Animais , Transplante de Rim/efeitos adversos , Ligante de CD40 , Rim , Anticorpos Monoclonais/uso terapêutico , Antígenos CD40 , Imunoglobulina G , Primatas , Aloenxertos , Sobrevivência de Enxerto , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle
2.
Sci Transl Med ; 15(690): eadd5318, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018417

RESUMO

Hematopoietic stem cell transplantation (HSCT) has many potential applications beyond current standard indications, including treatment of autoimmune disease, gene therapy, and transplant tolerance induction. However, severe myelosuppression and other toxicities after myeloablative conditioning regimens have hampered wider clinical use. To achieve donor hematopoietic stem cell (HSC) engraftment, it appears essential to establish niches for the donor HSCs by depleting the host HSCs. To date, this has been achievable only by nonselective treatments such as irradiation or chemotherapeutic drugs. An approach that is capable of more selectively depleting host HSCs is needed to widen the clinical application of HSCT. Here, we show in a clinically relevant nonhuman primate model that selective inhibition of B cell lymphoma 2 (Bcl-2) promoted hematopoietic chimerism and renal allograft tolerance after partial deletion of HSCs and effective peripheral lymphocyte deletion while preserving myeloid cells and regulatory T cells. Although Bcl-2 inhibition alone was insufficient to induce hematopoietic chimerism, the addition of a Bcl-2 inhibitor resulted in promotion of hematopoietic chimerism and renal allograft tolerance despite using only half of the dose of total body irradiation previously required. Selective inhibition of Bcl-2 is therefore a promising approach to induce hematopoietic chimerism without myelosuppression and has the potential to render HSCT more feasible for a variety of clinical indications.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Transplante de Rim , Animais , Quimerismo , Primatas , Tolerância ao Transplante , Genes bcl-2
3.
Transplant Direct ; 7(6): e705, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34056080

RESUMO

BACKGROUND: In kidney transplantation, long-term allograft acceptance in cynomolgus macaques was achieved using a mixed-chimerism protocol based on the clinically available reagents, rabbit anti-thymocyte globulin (ATG), and belatacept. Here, we have tested the same protocol in cynomolgus macaques transplanted with fully allogeneic lung grafts. METHODS: Five cynomolgus macaques underwent left orthotopic lung transplantation. Initial immunosuppression included equine ATG and anti-IL6RmAb induction, followed by triple-drug immunosuppression for 4 mo. Post-transplant, a nonmyeloablative conditioning regimen was applied, including total body and thymic irradiation. Rabbit ATG, belatacept, anti-IL6RmAb, and donor bone marrow transplantation (DBMT) were given, in addition to a 28-d course of cyclosporine. All immunosuppressant drugs were stopped on day 29 after DBMT. RESULTS: One monkey rejected its lung before DBMT due to AMR, after developing donor-specific antibodies. Two monkeys developed fatal post-transplant lymphoproliferative disorder, and both monkeys had signs of cellular rejection in their allografts upon autopsy. The remaining 2 monkeys showed severe cellular rejection on days 42 and 70 post-DBMT. Cytokine analysis suggested higher levels of pro-inflammatory markers in the lung transplant cohort, as compared to kidney recipients. CONCLUSION: Although the clinically applicable protocol showed success in kidney transplantation, the study did not show long-term survival in a lung transplant model, highlighting the organ-specific differences in tolerance induction.

4.
Transplantation ; 103(4): 689-697, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30300283

RESUMO

BACKGROUND: Although induction of durable mixed chimerism is required for murine skin allograft tolerance (TOL), renal allograft TOL has been achieved after induction of only transient mixed chimerism in nonhuman primates (NHPs) and humans. To better define the level/duration of chimerism required for stable renal allograft TOL, we retrospectively analyzed these parameters and compared them with transplant outcomes in NHP combined kidney and bone marrow transplant recipients. METHODS: Peripheral blood levels and duration of myeloid or lymphoid chimerism were retrospectively analyzed in 34 NHP combined kidney and bone marrow transplantation recipients which were divided into 3 groups: TOL, n = 10; chronic antibody-mediated rejection (CAMR), n = 12; and T cell-mediated rejection (TCMR), n = 12. RESULTS: All 4 of the recipients that failed to develop any chimerism lost their allografts due to TCMR after discontinuation of immunosuppression (56 ± 3 d). Among 30 recipients who successfully developed multilineage chimerism, 10 achieved long-term immunosuppression-free survival without rejection (1258 ± 388 d), 12 eventually developed CAMR (932 ± 155 d), and 8 developed TCMR (82 ± 10 d). The maximum level but not duration of lymphoid chimerism was significantly higher in TOL recipients compared with both CAMR (P = 0.0159) and TCMR (P = 0.0074). On the other hand, the maximum myeloid chimerism was significantly higher in TOL than in TCMR (P = 0.0469), but not in CAMR. Receiver operating characteristic analyses revealed that lymphoid chimerism levels of 3.1% or greater could reliably predict long-term immunosuppression-free renal allograft survival (P < 0.0001). CONCLUSIONS: This retrospective study confirmed that induction of chimerism is essential for long-term immunosuppression-free survival, which best correlates with lymphoid chimerism levels higher than 3.1%.


Assuntos
Quimerismo , Hematopoese , Transplante de Rim , Tolerância ao Transplante , Animais , Transplante de Medula Óssea , Rejeição de Enxerto/etiologia , Isoanticorpos/análise , Transplante de Rim/efeitos adversos , Macaca fascicularis , Estudos Retrospectivos
5.
Transplantation ; 103(1): 168-176, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113996

RESUMO

BACKGROUND: We recently reported anti-CD40 monoclonal antibody and rapamycin (aCD40/rapa) to be a reliable, nontoxic, immunosuppressive regimen for combined islet and kidney transplantation (CIKTx) in nonhuman primates. In the current study, we attempted to induce allograft tolerance through the mixed chimerism approach using a conditioning regimen with aCD40 and belatacept (Bela). METHODS: Five CIKTx or kidney transplant alone recipients were treated with aCD40/rapa for 4 months. All recipients then received a conditioning regimen including horse antithymocyte globulin and aCD40/Bela. The results were compared with previous reports of recipients treated with Bela-based regimens. RESULTS: All 3 CIKTx recipients developed mixed chimerism, which was significantly superior to that observed in the previous Bela-based studies. Nevertheless, all CIKTx recipients in this study lost their islet and renal allografts as a result of cellular and humoral rejection on days 140, 89, and 84. The 2 kidney transplant-alone recipients were treated with the same conditioning regimen and suffered rejection on days 127 and 116, despite the development of excellent chimerism. B lymphocyte reconstitution dominated by memory phenotypes was associated with early development of donor-specific antibodies in 4 of 5 recipients. In vitro assays showed no donor-specific regulatory T cell expansion, which has been consistently observed in tolerant recipients with our mixed chimerism approach. CONCLUSIONS: Despite displaying excellent immunosuppressive efficacy, costimulatory blockade with anti-CD40 monoclonal antibody (2C10R4) may inhibit the induction of renal or islet allograft tolerance via a mixed chimerism approach.


Assuntos
Abatacepte/farmacologia , Anticorpos Monoclonais/farmacologia , Antígenos CD40/imunologia , Rejeição de Enxerto/imunologia , Imunossupressores/farmacologia , Transplante das Ilhotas Pancreáticas/efeitos adversos , Transplante de Rim/efeitos adversos , Quimeras de Transplante , Condicionamento Pré-Transplante/métodos , Tolerância ao Transplante/efeitos dos fármacos , Aloenxertos , Animais , Anticorpos Monoclonais/toxicidade , Sobrevivência de Enxerto/efeitos dos fármacos , Imunossupressores/toxicidade , Macaca fascicularis , Modelos Animais , Fatores de Tempo , Condicionamento Pré-Transplante/efeitos adversos
6.
Transplantation ; 102(4): e128-e136, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29300231

RESUMO

BACKGROUND: We have previously reported successful induction of renal allograft tolerance in nonhuman primates (NHP) after an initial posttransplant period of conventional immunosuppression (delayed tolerance) using a nonmyeloablative conditioning regimen consisting of anti-CD154 and anti-CD8 mAbs plus equine antithymocyte globulin (Atgam) and donor bone marrow transplantation (DBMT). Because these reagents are not currently clinically available, the protocol was revised to be applicable to human recipients of deceased donor allografts. METHOD: Four cynomolgus monkeys received major histocompatibility complex-mismatched kidney allografts with conventional immunosuppression for 4 months. The recipients were then treated with a nonmyeloablative conditioning regimen consisting of thymoglobulin, belatacept, and DBMT. The results were compared with recipients treated with conditioning regimen consisting of Atgam and anti-CD154 mAb, with and without anti-CD8 mAb. RESULTS: In 4 consecutive NHP recipients treated with the modified conditioning regimen, homeostatic recovery of CD8 TEM was delayed until after day 20 and multilineage chimerism was successfully induced. Three of the 4 recipients achieved long-term allograft survival (>728, >540, >449 days) without ongoing maintenance immunosuppression. Posttransplant MLR showed loss of antidonor CD8 T cell and CD4 IFNγ responses with expansion of CD4FOXP3 regulatory T cells. However, the late development of donor-specific antibody in NHP recipients confirms the need for additional anti-B-cell depletion with agents, such as rituximab, as has been shown in our clinical trials. CONCLUSIONS: This study provides proof of principle that induction of mixed chimerism and long-term renal allograft survival without immunosuppression after delayed DBMT is possible with clinically available reagents.


Assuntos
Transplante de Medula Óssea/métodos , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Histocompatibilidade , Imunossupressores/administração & dosagem , Transplante de Rim/métodos , Condicionamento Pré-Transplante/métodos , Aloenxertos , Animais , Linfócitos T CD8-Positivos/imunologia , Quimioterapia Combinada , Rejeição de Enxerto/sangue , Rejeição de Enxerto/imunologia , Tolerância Imunológica , Isoanticorpos/sangue , Isoanticorpos/imunologia , Transplante de Rim/efeitos adversos , Macaca fascicularis , Células Th1/imunologia , Fatores de Tempo , Quimeras de Transplante
7.
Nat Commun ; 8: 13899, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071653

RESUMO

Ischaemic acute kidney injury (AKI), an inflammatory disease process, often progresses to chronic kidney disease (CKD), with no available effective prophylaxis. This is in part due to lack of clinically relevant CKD models in non-human primates. Here we demonstrate that inhibition of the archetypal innate immune receptor CD11b/CD18 prevents progression of AKI to CKD in cynomolgus monkeys. Severe ischaemia-reperfusion injury of the right kidney, with subsequent periods of the left ureter ligation, causes irreversible right kidney failure 3, 6 or 9 months after AKI. Moreover, prophylactic inactivation of CD11b/CD18, using the orthosteric CD11b/CD18 inhibitor mAb107, improves microvascular perfusion and histopathology, reduces intrarenal pro-inflammatory mediators and salvages kidney function long term. These studies reveal an important early role of CD11b+ leukocytes in post-ischaemic kidney fibrosis and failure, and suggest a potential early therapeutic intervention to mitigate progression of ischaemic AKI to CKD in humans.


Assuntos
Injúria Renal Aguda/prevenção & controle , Anticorpos Monoclonais/farmacologia , Antígeno CD11b/antagonistas & inibidores , Antígenos CD18/antagonistas & inibidores , Injúria Renal Aguda/metabolismo , Animais , Modelos Animais de Doenças , Fibrose/prevenção & controle , Mediadores da Inflamação/metabolismo , Isquemia/tratamento farmacológico , Isquemia/fisiopatologia , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/patologia , Testes de Função Renal , Macaca fascicularis , Masculino , Terapia de Alvo Molecular/métodos , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA