Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(4): 2827-2838, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104413

RESUMO

This paper presents a comprehensive data-to-model workflow, including a findable, accessible, interoperable, reusable (FAIR) community sorption database (newly developed LLNL Surface Complexation/Ion Exchange (L-SCIE) database) along with a data fitting workflow to efficiently optimize surface complexation reaction constants with multiple surface complexation model (SCM) constructs. This workflow serves as a universal framework to mine, compile, and analyze large numbers of published sorption data as well as to estimate reaction constants for parameterizing reactive transport models. The framework includes (1) data digitization from published papers, (2) data unification including unit conversions, and (3) data-model integration and reaction constant estimation using geochemical software PHREEQC coupled with the universal parameter estimation code PEST. We demonstrate our approach using an analysis of U(VI) sorption to quartz based on a first L-SCIE implementation, concluding that a multisite SCM construct with carbonate surface species yielded the best fit to community data. Surface complexation reaction constants extracted from this approach captured all available sorption data available in the literature and provided insight into previously published reaction constants and surface complexation model constructs. The L-SCIE sorption database presented herein allows for automating this approach across a wide range of metals and minerals and implementing novel machine learning approaches to reactive transport in the future.


Assuntos
Carbonatos , Minerais , Adsorção , Mineração de Dados , Bases de Dados Factuais
2.
ACS Omega ; 6(45): 30856-30864, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34805714

RESUMO

Oxygen stable isotopes in uranium oxides processed through the nuclear fuel cycle may have the potential to provide information about a material's origin and processing history. However, a more thorough understanding of the fractionating processes governing the formation of signatures in real-world samples is still needed. In this study, laboratory synthesis of uranium oxides modeled after industrial nuclear fuel fabrication was performed to follow the isotope fractionation during thermal decomposition and reduction of ammonium diuranate (ADU). Synthesis of ADU occurred using a gaseous NH3 route, followed by thermal decomposition in a dry nitrogen atmosphere at 400, 600, and 800 °C. The kinetic impact of heating ramp rates on isotope effects was explored by ramping to each decomposition temperature at 2, 20, and 200 °C min-1. In addition, ADU was reduced using direct (ramped to 600 °C in a hydrogen atmosphere) and indirect (thermally decomposed to U3O8 at 600 °C, then exposed to a hydrogen atmosphere) routes. The bulk oxygen isotope composition of ADU (δ18O = -16 ± 1‰) was very closely related to precipitation water (δ18O = -15.6‰). The solid products of thermal decomposition using ramp rates of 2 and 20 °C min-1 had statistically indistinguishable oxygen isotope compositions at each decomposition temperature, with increasing δ18O values in the transition from ADU to UO3 at 400 °C (δ18OUO3 - δ18OADU = 12.3‰) and the transition from UO3 to U3O8 at 600 °C (δ18OU3O8 - δ18OUO3 = 2.8‰). An enrichment of 18O attributable to water volatilization was observed in the low temperature (400 °C) product of thermal decomposition using a 200 °C min-1 ramp rate (δ18OUO3 - δ18OADU = 9.2‰). Above 400 °C, no additional fractionation was observed as UO3 decomposed to U3O8 with the rapid heating rate. Indirect reduction of ADU produced UO2 with a δ18O value 19.1‰ greater than the precipitate and 4.0‰ greater than the intermediate U3O8. Direct reduction of ADU at 600 °C in a hydrogen atmosphere resulted in the production of U4O9 with a δ18O value 17.1‰ greater than the precipitate. Except when a 200 °C min-1 ramp rate is employed, the results of both thermal decomposition and reduction show a consistent preferential enrichment of 18O as oxygen is removed from the original precipitate. Hence, the calcination and reduction reactions leading to the production of UO2 will yield unique oxygen isotope fractionations based on process parameters including heating rate and decomposition temperature.

3.
Anal Chem ; 93(10): 4472-4478, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33667067

RESUMO

The use of cosmogenically produced sulfur-35 (T1/2 = 87 days) and sodium-22 (T1/2 = 2.6 years) as intrinsic tracers can provide valuable information on catchment hydrology, flow paths, and subsurface storage. A new and straightforward method was created to determine the activities of both 35S and 22Na in various water sources by pumping large volumes (up to 1000 L) of water through cation- and anion-exchange resin columns in the field to collect sodium and sulfate ions and simple chemistry in the lab. Samples are counted for 35S using liquid scintillation counting (LSC) and for 22Na via γ spectroscopy. Our novel in situ method provides faster sample throughput as well as better counting statistics and lower detection limits. Both methods were successfully applied at the Southern Sierra Critical Zone Observatory.

4.
ACS Appl Mater Interfaces ; 12(38): 42644-42652, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32869974

RESUMO

Capacitive deionization (CDI) is a promising water desalination technology that is applicable to the treatment of low-salinity brackish waters and the selective removal of ionic contaminants. In this work, we show that by making a small change in the synthetic procedure of hierarchical carbon aerogel monolith (HCAM) electrodes, we can adjust the pore-size distribution and tailor the selectivity, effectively switching between selective adsorption of calcium or sodium ions. Ion selectivity was measured for a mixture of 5 mM NaCl and 2.5 mM CaCl2. For the low activated flow-through CDI (fteCDI) cell, we observed extremely high sodium selectivity over calcium (SNa/Ca ≫ 10, no Ca2+ adsorbed) at all of the applied potentials, while for the highly activated fteCDI cell, we observed a selectivity value of 6.6 ± 0.8 at 0.6 V for calcium over sodium that decreased to 2.2 ± 0.03 at 1.2 V. Molecular dynamics simulations indicated that the loss in Ca2+ selectivity over Na+ at high applied voltages could be due to a competition between ion-pore electrostatic interactions and volume exclusion ("crowding") effects. Interestingly, we also find with these simulations that the relative sizes of the ions change due to changes in hydration at a higher voltage.

5.
Environ Sci Technol ; 53(18): 10863-10870, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31244071

RESUMO

The contamination of water resources with nitrate is a growing and significant problem. Here we report the use of ultramicroporous carbon as a capacitive deionization (CDI) electrode for selectively removing nitrate from an anion mixture. Through moderate activation, we achieve a micropore-size distribution consisting almost exclusively of narrow (<1 nm) pores that are well suited for adsorbing the planar, weakly hydrated nitrate molecule. Cyclic voltammetry measurements reveal an enhanced capacitance for nitrate when compared to chloride as well as significant ion sieving effects when sulfate is the only anion present. We measure high selectivities (S) of both nitrate over sulfate (SNO3/SO4 = 17.8 ± 3.6 at 0.6 V) and nitrate over chloride (SNO3/Cl = 6.1 ± 0.4 at 0.6 V) when performing a constant voltage CDI separation on 3.33 mM/3.33 mM/1.67 mM Cl/NO3/SO4 feedwater. These results are particularly encouraging considering that a divalent interferant was present in the feed. Using molecular dynamics simulations, we examine the solvation characteristics of these ions to better understand why nitrate is preferentially electrosorbed over sulfate and chloride.


Assuntos
Carbono , Purificação da Água , Adsorção , Capacitância Elétrica , Eletrodos , Nitratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA