Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Opin Biotechnol ; 87: 103107, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484421

RESUMO

Polyphosphates, chains of polymerized phosphate subunits, are used as food additives for various applications such as conservation, water retention, and pH buffering. Currently, the value chain of phosphates is linear, based on mining fossil phosphate rock, which is anticipated to be depleted in a few hundred years. With no replacement available, a transition to a circular phosphate economy, to which biological systems can contribute, is required. Baker's yeast can hyperaccumulate phosphate from various phosphate-rich waste streams and form polyphosphates, which can be used directly or as polyphosphate-rich yeast extract with enhanced properties in the food industry. By maturing the technology to an industrial level and allowing upcycled waste streams for food applications, substantial contributions to a sustainable phosphate economy can be achieved.

2.
Biotechnol Biofuels Bioprod ; 16(1): 181, 2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38008736

RESUMO

BACKGROUND: Reducing the costs of biorefinery processes is a crucial step in replacing petrochemical products by sustainable, biotechnological alternatives. Substrate costs and downstream processing present large potential for improvement of cost efficiency. The implementation of in situ adsorption as an energy-efficient product recovery method can reduce costs in both areas. While selective product separation is possible at ambient conditions, yield-limiting effects, as for example product inhibition, can be reduced in an integrated process. RESULTS: An in situ adsorption process was integrated into the production of itaconic acid with Ustilago cynodontis IAmax, as an example of a promising biorefinery process. A suitable feed strategy was developed to enable efficient production and selective recovery of itaconic acid by maintaining optimal glucose concentrations. Online monitoring via Raman spectroscopy was implemented to enable a first process control and understand the interactions of metabolites with the adsorbent. In the final, integrated bioprocess, yield, titre, and space-time yield of the fermentation process were increased to values of 0.41 gIA/gGlucose, 126.5 gIA/L and 0.52 gIA/L/h. This corresponds to an increase of up to 30% in comparison to the first extended batch experiment without in situ product removal. Itaconic acid was recovered with a purity of at least 95% and high concentrations above 300 g/L in the eluate. CONCLUSION: Integration of product separation via adsorption into the bioprocess was successfully conducted and improved the efficiency of itaconic acid production. Raman spectroscopy was proven to be a reliable tool for online monitoring of various metabolites and facilitated design and validation of the complex separation and feed process. The general process concept can be transferred to the production of various similar bioproducts, expanding the tool kit for design of innovative biorefinery processes.

3.
Sci Total Environ ; 905: 167035, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37709100

RESUMO

The Ames test is one of the most applied tools in mutagenicity testing of chemicals ever since its introduction by Ames et al. in the 1970s. Its principle is based on histidine auxotrophic bacteria that regain prototrophy through reverse mutations. In the presence of a mutagen, more reverse mutations occur that become visible as increased bacterial growth on medium without histidine. Many miniaturized formats of the Ames test have emerged to enable the testing of environmental water samples, increase experimental throughput, and lower the required amounts of test substances. However, most of these formats still rely on endpoint determinations. In contrast, the recently introduced Ames RAMOS test determines mutagenicity through online monitoring of the oxygen transfer rate. In this study, the oxygen transfer rate of Salmonella typhimurium TA100 during the Ames plate incorporation test was monitored and compared to the Ames RAMOS test to prove its validity further. Furthermore, the Ames RAMOS test in 96-well scale is newly introduced. For both the Ames plate incorporation and the Ames RAMOS test, the influence of the inoculum cell count on the negative control was highlighted: A lower inoculum cell count led to a higher coefficient of variation. However, a lower inoculum cell count also led to a higher separation efficiency in the Ames RAMOS test and, thus, to better detection of a mutagenic substance at lower concentrations.


Assuntos
Histidina , Salmonella typhimurium , Histidina/genética , Salmonella typhimurium/genética , Mutagênicos/toxicidade , Mutagênicos/química , Mutação , Testes de Mutagenicidade , Oxigênio
4.
BMC Biotechnol ; 23(1): 25, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507713

RESUMO

BACKGROUND: One critical parameter in microbial cultivations is the composition of the cultivation medium. Nowadays, the application of chemically defined media increases, due to a more defined and reproducible fermentation performance than in complex media. In order, to improve cost-effectiveness of fermentation processes using chemically defined media, the media should not contain nutrients in large excess. Additionally, to obtain high product yields, the nutrient concentrations should not be limiting. Therefore, efficient medium optimization techniques are required which adapt medium compositions to the specific nutrient requirements of microorganisms. RESULTS: Since most Paenibacillus cultivation protocols so far described in literature are based on complex ingredients, in this study, a chemically defined medium for an industrially relevant Paenibacillus polymyxa strain was developed. A recently reported method, which combines a systematic experimental procedure in combination with online monitoring of the respiration activity, was applied and extended to identify growth limitations for Paenibacillus polymyxa. All cultivations were performed in microtiter plates. By systematically increasing the concentrations of different nutrient groups, nicotinic acid was identified as a growth-limiting component. Additionally, an insufficient buffer capacity was observed. After optimizing the growth in the chemically defined medium, the medium components were systematically reduced to contain only nutrients relevant for growth. Vitamins were reduced to nicotinic acid and biotin, and amino acids to methionine, histidine, proline, arginine, and glutamate. Nucleobases/-sides could be completely left out of the medium. Finally, the cultivation in the reduced medium was reproduced in a laboratory fermenter. CONCLUSION: In this study, a reliable and time-efficient high-throughput methodology was extended to investigate limitations in chemically defined media. The interpretation of online measured respiration activities agreed well with the growth performance of samples measured in parallel via offline analyses. Furthermore, the cultivation in microtiter plates was validated in a laboratory fermenter. The results underline the benefits of online monitoring of the respiration activity already in the early stages of process development, to avoid limitations of medium components, oxygen limitation and pH inhibition during the scale-up.


Assuntos
Ácidos Nicotínicos , Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/metabolismo , Reatores Biológicos , Fermentação , Meios de Cultura/química , Ácidos Nicotínicos/metabolismo
5.
Biotechnol Biofuels Bioprod ; 16(1): 49, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934285

RESUMO

BACKGROUND: The efficiency of downstream processes plays a crucial role in the transition from conventional petrochemical processes to sustainable biotechnological production routes. One promising candidate for product separation from fermentations with low energy demand and high selectivity is the adsorption of the target product on hydrophobic adsorbents. However, only limited knowledge exists about the interaction of these adsorbents and the bioprocess. The bioprocess could possibly be harmed by the release of inhibitory components from the adsorbent surface. Another possibility is co-adsorption of essential nutrients, especially in an in situ application, making these nutrients unavailable to the applied microorganism. RESULTS: A test protocol investigating adsorbent-bioprocess compatibility was designed and applied on a variety of adsorbents. Inhibitor release and nutrient adsorption was studied in an isolated manner. Respiratory data recorded by a RAMOS device was used to assess the influence of the adsorbents on the cultivation in three different microbial systems for up to six different adsorbents per system. While no inhibitor release was detected in our investigations, adsorption of different essential nutrients was observed. CONCLUSION: The application of adsorption for product recovery from the bioprocess was proven to be generally possible, but nutrient adsorption has to be assessed for each application individually. To account for nutrient adsorption, adsorptive product separation should only be applied after sufficient microbial growth. Moreover, concentrations of co-adsorbed nutrients need to be increased to compensate nutrient loss. The presented protocol enables an investigation of adsorbent-bioprocess compatibility with high-throughput and limited effort.

6.
J Biol Eng ; 16(1): 31, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414992

RESUMO

BACKGROUND: Historically, complex media are used for the cultivation of Gluconobacter oxydans in industry and research. Using complex media has different drawbacks like higher costs for downstream processing and significant variations in fermentation performances. Synthetic media can overcome those drawbacks, lead to reproducible fermentation performances. However, the development of a synthetic medium is time and labour consuming. Detailed knowledge about auxotrophies and metabolic requirements of G. oxydans is necessary. In this work, we use a systematic approach applying the in-house developed µRAMOS technology to identify auxotrophies and develop a defined minimal medium for cultivation of G. oxydans fdh, improving the production process of the natural sweetener 5-ketofructose. RESULTS: A rich, defined synthetic medium, consisting of 48 components, including vitamins, amino acids and trace elements, was used as a basis for medium development. In a comprehensive series of experiments, component groups and single media components were individually omitted from or supplemented to the medium and analysed regarding their performance. Main components like salts and trace elements were necessary for the growth of G. oxydans fdh, whereas nucleotides were shown to be non-essential. Moreover, results indicated that the amino acids isoleucine, glutamate and glycine and the vitamins nicotinic acid, pantothenic acid and p-aminobenzoic acid are necessary for the growth of G. oxydans fdh. The glutamate concentration was increased three-fold, functioning as a precursor for amino acid synthesis. Finally, a defined minimal medium called 'Gluconobacter minimal medium' was developed. The performance of this medium was tested in comparison with commonly used media for Gluconobacter. Similar/competitive results regarding cultivation time, yield and productivity were obtained. Moreover, the application of the medium in a fed-batch fermentation process was successfully demonstrated. CONCLUSION: The systematic investigation of a wide range of media components allowed the successful development of the Gluconobacter minimal medium. This chemically defined medium contains only 14 ingredients, customised for the cultivation of G. oxydans fdh and 5-ketofructose production. This enables a more straightforward process development regarding upstream and downstream processing. Moreover, metabolic demands of G. oxydans were identified, which further can be used in media or strain development for different processes.

7.
Sci Total Environ ; 717: 137168, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32084684

RESUMO

The Ames test is one of the most widely used mutagenicity tests. It employs histidine auxotrophic bacteria, which can mutate back to histidine prototrophy and, thus, grow on a histidine deficient medium. These mutants develop predominantly after adding a mutagenic compound during an initial growth phase on 1 mg/L histidine. In the established test systems, an endpoint determination is performed to determine the relative number of mutants. An alternative Ames test, the Ames RAMOS test, has been developed, which enables the online detection of mutagenicity by monitoring respiration activity. The reproducibility of the newly developed test system was investigated. A strong dependence of the test results on the inoculum volume transferred from the preculture was found. The more inoculum was needed to reach the required initial OD, the more mutagenic a positive control was evaluated. This effect was attributed to the histidine transfer from the preculture to the original Ames RAMOS test. The same problem is evident in the Ames fluctuation test. High reproducibility of the Ames RAMOS test could be achieved by performing the preculture on minimal medium with a defined histidine concentration and termination after histidine depletion. By using 5 mg/L initial histidine within the minimal medium, a higher separation efficiency between negative control and mutagenic samples could be achieved. This separation efficiency could be further increased by lowering the cultivation temperature from 37 to 30 °C, i.e. lowering the maximum growth rate. The optimized Ames RAMOS test was then transferred into a 48-well microtiter plate format (µRAMOS) for obtaining a high throughput test. The online detection of mutagenicity leads to a reduction of working time in the laboratory. Due to the optimization of reproducibility and the increase in separation efficiency, a sound mutagenicity evaluation, even of weak mutagenic compounds, can be achieved.


Assuntos
Mutagênicos , Salmonella typhimurium , Histidina , Testes de Mutagenicidade , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA