Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(764): eado4463, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259810

RESUMO

Neuromuscular blocking agents (NMBAs) relax skeletal muscles to facilitate surgeries and ease intubation but can lead to adverse reactions, including complications because of postoperative residual neuromuscular blockade (rNMB) and, in rare cases, anaphylaxis. Both adverse reactions vary between types of NMBAs, with rocuronium, a widely used nondepolarizing NMBA, inducing one of the longest rNMB durations and highest anaphylaxis incidences. rNMB induced by rocuronium can be reversed by the synthetic γ-cyclodextrin sugammadex. However, in rare cases, sugammadex can provoke anaphylaxis. Thus, additional therapeutic options are needed. Rocuronium-induced anaphylaxis is proposed to rely on preexisting rocuronium-binding antibodies. To understand the pathogenesis of rocuronium-induced anaphylaxis and to identify potential therapeutics, we investigated the memory B cell antibody repertoire of patients with suspected hypersensitivity to rocuronium. We identified polyclonal antibody repertoires with a high diversity among V(D)J genes without evidence of clonal groups. When recombinantly expressed, these antibodies demonstrated specificity and low affinity for rocuronium without cross-reactivity for other NMBAs. Moreover, when these antibodies were expressed as human immunoglobulin E (IgE), they triggered human mast cell activation and passive systemic anaphylaxis in transgenic mice, although their affinities were insufficient to serve as reversal agents. Rocuronium-specific, high-affinity antibodies were thus isolated from rocuronium-immunized mice. The highest-affinity antibody was able to reverse rocuronium-induced neuromuscular blockade in nonhuman primates with kinetics comparable to that of sugammadex. Together, these data support the hypothesis that antibodies cause anaphylactic reactions to rocuronium and pave the way for improved diagnostics and neuromuscular blockade reversal agents.


Assuntos
Anafilaxia , Rocurônio , Rocurônio/efeitos adversos , Animais , Humanos , Anafilaxia/imunologia , Anticorpos , Camundongos , Período Perioperatório , Androstanóis/efeitos adversos , Sugammadex/efeitos adversos , Imunoglobulina E/imunologia , Especificidade de Anticorpos , Feminino , Modelos Animais de Doenças , Masculino
2.
Nat Commun ; 14(1): 4385, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474493

RESUMO

The cytokine interleukin-1ß (IL-1ß) has pivotal roles in antimicrobial immunity, but also incites inflammatory disease. Bioactive IL-1ß is released following proteolytic maturation of the pro-IL-1ß precursor by caspase-1. UBE2L3, a ubiquitin conjugating enzyme, promotes pro-IL-1ß ubiquitylation and proteasomal disposal. However, actions of UBE2L3 in vivo and its ubiquitin ligase partners in this process are unknown. Here we report that deletion of Ube2l3 in mice reduces pro-IL-1ß turnover in macrophages, leading to excessive mature IL-1ß production, neutrophilic inflammation and disease following inflammasome activation. An unbiased RNAi screen identified TRIP12 and AREL1 E3 ligases of the Homologous to E6 C-terminus (HECT) family in adding destabilising K27-, K29- and K33- poly-ubiquitin chains on pro-IL-1ß. We show that precursor abundance determines mature IL-1ß production, and UBE2L3, TRIP12 and AREL1 limit inflammation by shrinking the cellular pool of pro-IL-1ß. Our study uncovers fundamental processes governing IL-1ß homeostasis and provides molecular insights that could be exploited to mitigate its adverse actions in disease.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Animais , Camundongos , Inflamação , Interleucina-1beta , Ubiquitina , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
3.
Biology (Basel) ; 12(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37508362

RESUMO

Allergies and atopy have emerged as significant public health concerns, with a progressively increasing incidence over the last two decades. Anaphylaxis is the most severe form of allergic reactions, characterized by a rapid onset and potentially fatal outcome, even in healthy individuals. Due to the unpredictable nature and potential lethality of anaphylaxis and the wide range of allergens involved, clinical studies in human patients have proven to be challenging. Diagnosis is further complicated by the lack of reliable laboratory biomarkers to confirm clinical suspicion. Thus, animal models have been developed to replicate human anaphylaxis and explore its pathophysiology. Whereas results obtained from animal models may not always be directly translatable to humans, they serve as a foundation for understanding the underlying mechanisms. Animal models are an essential tool for investigating new biomarkers that could be incorporated into the allergy workup for patients, as well as for the development of novel treatments. Two primary pathways have been described in animals and humans: classic, predominantly involving IgE and histamine, and alternative, reliant on IgG and the platelet-activating factor. This review will focus essentially on the former and aims to describe the most utilized IgE-mediated anaphylaxis animal models, including their respective advantages and limitations.

4.
Eur J Anaesthesiol ; 40(2): 95-104, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301083

RESUMO

Acute hypersensitivity reactions (AHRs) occurring in present-day anaesthesia can have severe, sometimes fatal, consequences and their incidence is increasing. The most frequent allergens responsible for AHR during anaesthesia are neuromuscular blocking agents (NMBAs) (70% of the cases) followed by antibiotics (18%), patent blue dye and methylene blue dye (5%), and latex (5%). Following an AHR, strategies for subsequent anaesthetic procedures (especially the choice of an NMBA) may be difficult to formulate due to inconclusive diagnostic analysis in up to 30% of AHRs. Current diagnosis of AHR relies on the detection of mast cell degranulation products and drug-specific type E immunoglobulins (IgE) in order to document an IgE-mediated anaphylaxis (IgE endotype). Nonetheless, other IgE-independent pathways can be involved in AHR, but their detection is not currently available in standard situations. The different mechanisms (endotypes) involved in peri-operative AHR may contribute to the inconclusive diagnostic work-up and this generates uncertainty concerning the culpable drug and strategy for subsequent anaesthetic procedures. This review provides details on the IgE endotype; an update on non-IgE related endotypes and the novel diagnostic tools that could characterise them. This detailed update is intended to provide explicit clinical reasoning tools to the anaesthesiologist faced with an incomplete AHR diagnostic work-up and to facilitate the decision-making process regarding anaesthetic procedures following an AHR to NMBAs.


Assuntos
Anafilaxia , Anestesia , Bloqueadores Neuromusculares , Humanos , Imunoglobulina E/efeitos adversos , Anafilaxia/induzido quimicamente , Anafilaxia/diagnóstico , Bloqueadores Neuromusculares/efeitos adversos , Anestesia/efeitos adversos , Alérgenos/efeitos adversos , Testes Cutâneos/efeitos adversos , Testes Cutâneos/métodos
5.
Pharmaceutics ; 12(10)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993086

RESUMO

Single-domain antibodies (sdAbs) offer great features such as increased stability but are hampered by a limited serum half-life. Many strategies have been developed to improve the sdAb half-life, such as protein engineering and controlled release systems (CRS). In our study, we designed a new product that combined a hydrogel with a 3D-printed implant. The results demonstrate the implant's ability to sustain sdAb release up to 13 days through a reduced initial burst release followed by a continuous release. Furthermore, formulation screening helped to identify the best sdAb formulation conditions and improved our understanding of our CRS. Through the screening step, we gained knowledge about the influence of the choice of polymer and about potential interactions between the sdAb and the polymer. To conclude, this feasibility study confirmed the ability of our CRS to extend sdAb release and established the fundamental role of formulation screening for maximizing knowledge about our CRS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA