Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Antibiotics (Basel) ; 11(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139991

RESUMO

In the context of difficult-to-treat carbapenem-resistant Pseudomonas aeruginosa infections, we evaluated imipenem, meropenem, and doripenem combinations against eleven carbapenemase-producing P. aeruginosa isolates. According to the widespread global distribution of high-risk clones and carbapenemases, four representative isolates were selected: ST175 (OXA-2/VIM-20), ST175 (VIM-2), ST235 (GES-5), and ST111 (IMP-33), for efficacy studies using a sepsis murine model. Minimum inhibitory concentration (mg/L) ranges were 64-256 for imipenem and 16-128 for meropenem and doripenem. In vitro, imipenem plus meropenem was synergistic against 72% of isolates and doripenem plus meropenem or imipenem against 55% and 45%, respectively. All combinations were synergistic against the ST175, ST235, and ST155 clones. In vivo, meropenem diminished the spleen and blood bacterial concentrations of four and three isolates, respectively, with better efficacy than imipenem or doripenem. The combinations did not show efficacy compared with the more active monotherapies, except for imipenem plus meropenem, which reduced the ST235 bacterial spleen concentration. Mortality decreased with imipenem plus meropenem or doripenem for the ST175 isolate. Results suggest that carbapenem combinations are not an alternative for severe infections by carbapenemase-producing P. aeruginosa. Meropenem monotherapy showed in vivo efficacy despite its high MIC, probably because its dosage allowed a sufficient antimicrobial exposure at the infection sites.

2.
J Antimicrob Chemother ; 77(7): 1862-1872, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35451008

RESUMO

OBJECTIVES: To determine the susceptibility profiles and the resistome of Pseudomonas aeruginosa isolates from European ICUs during a prospective cohort study (ASPIRE-ICU). METHODS: 723 isolates from respiratory samples or perianal swabs of 402 patients from 29 sites in 11 countries were studied. MICs of 12 antibiotics were determined by broth microdilution. Horizontally acquired ß-lactamases were analysed through phenotypic and genetic assays. The first respiratory isolates from 105 patients providing such samples were analysed through WGS, including the analysis of the resistome and a previously defined genotypic resistance score. Spontaneous mutant frequencies and the genetic basis of hypermutation were assessed. RESULTS: All agents except colistin showed resistance rates above 20%, including ceftolozane/tazobactam and ceftazidime/avibactam. 24.9% of the isolates were XDR, with a wide intercountry variation (0%-62.5%). 13.2% of the isolates were classified as DTR (difficult-to-treat resistance). 21.4% of the isolates produced ESBLs (mostly PER-1) or carbapenemases (mostly NDM-1, VIM-1/2 and GES-5). WGS showed that these determinants were linked to high-risk clones (particularly ST235 and ST654). WGS revealed a wide repertoire of mutation-driven resistance mechanisms, with multiple lineage-specific mutations. The most frequently mutated genes were gyrA, parC, oprD, mexZ, nalD and parS, but only two of the isolates were hypermutable. Finally, a good accuracy of the genotypic score to predict susceptibility (91%-100%) and resistance (94%-100%) was documented. CONCLUSIONS: An overall high prevalence of resistance is documented European ICUs, but with a wide intercountry variability determined by the dissemination of XDR high-risk clones, arguing for the need to reinforce infection control measures.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Compostos Azabicíclicos , Ceftazidima , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genômica , Humanos , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa/genética
3.
Pharmaceutics ; 13(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34834314

RESUMO

Pseudomonas aeruginosa remains one of the major causes of healthcare-associated infection in Europe; in 2019, 12.5% of invasive isolates of P. aeruginosa in Spain presented combined resistance to ≥3 antimicrobial groups. The Spanish nationwide survey on P. aeruginosa antimicrobial resistance mechanisms and molecular epidemiology was published in 2019. Based on the information from this survey, the objective of this work was to analyze the overall antimicrobial activity of the antipseudomonal antibiotics considering pharmacokinetic/pharmacodynamic (PK/PD) analysis. The role of PK/PD to prevent or minimize resistance emergence was also evaluated. A 10,000-subject Monte Carlo simulation was executed to calculate the probability of target attainment (PTA) and the cumulative fraction of response (CFR) considering the minimum inhibitory concentration (MIC) distribution of bacteria isolated in ICU or medical wards, and distinguishing between sample types (respiratory and non-respiratory). Ceftazidime/avibactam followed by ceftolozane/tazobactam and colistin, categorized as the Reserve by the Access, Watch, Reserve (AWaRe) classification of the World Health Organization, were the most active antimicrobials, with differences depending on the admission service, sample type, and dose regimen. Discrepancies between EUCAST-susceptibility breakpoints for P. aeruginosa and those estimated by PK/PD analysis were detected. Only standard doses of ceftazidime/avibactam and ceftolozane/tazobactam provided drug concentrations associated with resistance suppression.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34088448

RESUMO

INTRODUCTION: Pseudomonas aeruginosa causes severe infections, particularly in healthcare settings and immunocompromised patients in whom MDR and XDR isolates are more prevalent. The aim of this study is to validate a method based on MALDI-TOF spectra analysis for early detection of the ST175 high-risk clone (HRC). METHODS: The MALDI-TOF spectra of the first 10 P. aeruginosa clinical isolates from each of the 51 participating Spanish hospitals were analyzed (n=506). Resistance profiles were determined by broth microdilution, and clonal epidemiology was assessed by PFGE analysis and multilocus sequence typing (MLST) in a previous study. RESULTS: Among all the isolates, 14.2% were XDR and 26.9% were non-susceptible to meropenem, while rates of resistance to ceftolozane/tazobactam (3.6%) and colistin (5.7%) were low. Up to 41.7% of all XDR isolates belonged to the ST175 clone, and most of them were only susceptible to ceftolozane/tazobactam and colistin. However, most of the resistance to ceftolozane/tazobactam among isolates belonging to this HRC was observed in carbapenemase-producing isolates. A model based on the presence of two MALDI-TOF biomarker peaks at m/z 6911 and 7359 yielded a negative predictive value (NPV) and a positive predictive value (PPV) of 99.8% and 91.9%, respectively, and sensitivity and specificity values of 97.1% and 99.4%, respectively. CONCLUSIONS: MALDI-TOF spectra analysis using a model based on the presence of two biomarker peaks proved to maintain high sensitivity and specificity for early detection of the ST175 HRC in a large collection of isolates from all Spanish regions. These data support the use of this model in a clinical setting; however, the consequences of detection of the ST175 HRC, such as choice of empirical antibiotic therapy, must be consistent with local epidemiology and the prevalence of certain resistance patterns of this HRC, such as carbapenemase production, in a given geographical area.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Células Clonais , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Infecções por Pseudomonas/diagnóstico , Pseudomonas aeruginosa/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Antimicrob Agents Chemother ; 65(8): e0008921, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34060900

RESUMO

A ceftolozane-tazobactam- and ceftazime-avibactam-resistant Pseudomonas aeruginosa isolate was recovered after treatment (including azithromycin, meropenem, and ceftolozane-tazobactam) from a patient that had developed ventilator-associated pneumonia after COVID-19 infection. Whole-genome sequencing revealed that the strain, belonging to ST274, had acquired a nonsense mutation leading to truncated carbapenem porin OprD (W277X), a 7-bp deletion (nt213Δ7) in NfxB (negative regulator of the efflux pump MexCD-OprJ), and two missense mutations (Q178R and S133G) located within the first large periplasmic loop of MexD. Through the construction of mexD mutants and complementation assays with wild-type nfxB, it was evidenced that resistance to the novel cephalosporin-ß-lactamase inhibitor combinations was caused by the modification of MexD substrate specificity.


Assuntos
COVID-19 , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinase , Cefalosporinas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , SARS-CoV-2 , Inibidores de beta-Lactamases/farmacologia
6.
Nat Commun ; 12(1): 2460, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911082

RESUMO

It is well established that antibiotic treatment selects for resistance, but the dynamics of this process during infections are poorly understood. Here we map the responses of Pseudomonas aeruginosa to treatment in high definition during a lung infection of a single ICU patient. Host immunity and antibiotic therapy with meropenem suppressed P. aeruginosa, but a second wave of infection emerged due to the growth of oprD and wbpM meropenem resistant mutants that evolved in situ. Selection then led to a loss of resistance by decreasing the prevalence of low fitness oprD mutants, increasing the frequency of high fitness mutants lacking the MexAB-OprM efflux pump, and decreasing the copy number of a multidrug resistance plasmid. Ultimately, host immunity suppressed wbpM mutants with high meropenem resistance and fitness. Our study highlights how natural selection and host immunity interact to drive both the rapid rise, and fall, of resistance during infection.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Meropeném/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Seleção Genética/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Humanos , Hidroliases/genética , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Plasmídeos/genética , Porinas/genética , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/imunologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Análise de Sequência de DNA , Choque Hemorrágico/microbiologia
7.
Front Microbiol ; 12: 803827, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095814

RESUMO

Objective: To analyze the SARS-CoV-2 genomic epidemiology in the Balearic Islands, a unique setting in which the course of the pandemic has been influenced by a complex interplay between insularity, severe social restrictions and tourism travels. Methods: Since the onset of the pandemic, more than 2,700 SARS-CoV-2 positive respiratory samples have been randomly selected and sequenced in the Balearic Islands. Genetic diversity of circulating variants was assessed by lineage assignment of consensus whole genome sequences with PANGOLIN and investigation of additional spike mutations. Results: Consensus sequences were assigned to 46 different PANGO lineages and 75% of genomes were classified within a VOC, VUI, or VUM variant according to the WHO definitions. Highest genetic diversity was documented in the island of Majorca (42 different lineages detected). Globally, lineages B.1.1.7 and B.1.617.2/AY.X were identified as the 2 major lineages circulating in the Balearic Islands during the pandemic, distantly followed by lineages B.1.177/B.1.177.X. However, in Ibiza/Formentera lineage distribution was slightly different and lineage B.1.221 was the third most prevalent. Temporal distribution analysis showed that B.1 and B.1.5 lineages dominated the first epidemic wave, lineage B.1.177 dominated the second and third, and lineage B.1.617.2 the fourth. Of note, lineage B.1.1.7 became the most prevalent circulating lineage during first half of 2021; however, it was not associated with an increased in COVID-19 cases likely due to severe social restrictions and limited travels. Additional spike mutations were rarely documented with the exception of mutation S:Q613H which has been detected in several genomes (n = 25) since July 2021. Conclusion: Virus evolution, mainly driven by the acquisition and selection of spike substitutions conferring biological advantages, social restrictions, and size population are apparently key factors for explaining the epidemic patterns registered in the Balearic Islands.

8.
Int J Antimicrob Agents ; 56(6): 106196, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33045347

RESUMO

Pseudomonas aeruginosa global clones associated with multidrug-resistant (MDR) and extensively drug-resistant (XDR) phenotypes, denominated high-risk clones, are a growing threat in hospitals worldwide. Here we provide a 2020 update on nosocomial MDR/XDR high-risk P. aeruginosa clones. According to their prevalence, global spread and association with MDR/XDR profiles and regarding extended-spectrum ß-lactamases (ESBLs) and carbapenemases, the worldwide top 10 P. aeruginosa high-risk clones includes ST235, ST111, ST233, ST244, ST357, ST308, ST175, ST277, ST654 and ST298. ST235 is certainly the most relevant high-risk clone, showing a worldwide dissemination associated with over 60 different ß-lactamase variants, including multiple carbapenemases from classes A and B. Moreover, ST235 shows a highly virulent phenotype associated with a high mortality rate, likely due to the production of the ExoU cytotoxin. ST111 and ST233 are also worldwide disseminated MDR/XDR clones, particularly linked to VIM-2 metallo-ß-lactamase (MBL), whereas ST244 is a very prevalent clone not always associated with MDR/XDR profiles. ST357, ST308 and ST298 are also exoU+ and are therefore potentially associated with higher virulence. In contrast, ST175, prevalent in some European countries, shows a MDR/XDR phenotype frequently caused by specific chromosomal mutations and is associated with lower virulence. Finally, ST277 is highly prevalent in Brazil and is specifically associated with the SPM MBL. A deeper understanding of the underlying factors driving the success of high-risk clones, including the reported increased capacity for acquiring exogenous determinants, increased spontaneous mutation rates or greater ability to develop biofilms, is required to develop global strategies to combat them.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Transferência Genética Horizontal/genética , Pseudomonas aeruginosa/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Brasil/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação
9.
Artigo em Inglês | MEDLINE | ID: mdl-31740559

RESUMO

Imipenem and imipenem-relebactam MICs were determined for 1,445 Pseudomonas aeruginosa clinical isolates and a large panel of isogenic mutants showing the most relevant mutation-driven ß-lactam resistance mechanisms. Imipenem-relebactam showed the highest susceptibility rate (97.3%), followed by colistin and ceftolozane-tazobactam (both 94.6%). Imipenem-relebactam MICs remained ≤2 µg/ml in all 16 isogenic PAO1 mutants and in 8 pairs of extensively drug-resistant clinical strains that had developed resistance to ceftolozane-tazobactam and ceftazidime-avibactam due to mutations in OXA-10 or AmpC.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Colistina/farmacologia , Imipenem/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Humanos , Mutação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Resistência beta-Lactâmica , beta-Lactamases/genética
10.
J Antimicrob Chemother ; 74(11): 3217-3220, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430372

RESUMO

OBJECTIVES: To evaluate the correlation of O-antigen serotypes with resistance profiles and high-risk clones in a Spanish nationwide survey. METHODS: Up to 30 consecutive healthcare-associated Pseudomonas aeruginosa isolates were collected during October 2017 from each of 51 hospitals (covering all Spanish regions) with a total of 1445 isolates studied. MICs of 13 antipseudomonal agents and MDR/XDR profiles had been previously determined, as well as whole-genome sequences of 185 representative XDR isolates. O-antigen serotypes (O1-O16) were determined by agglutination using serotype-specific antisera (BioRad). The Pseudomonas aeruginosa serotyper (PAst) program was used for in silico serotyping. RESULTS: The most frequent serotypes were O6 (17.8%), O1 (15.4%) and O11 (13.3%). In contrast, the most frequent serotype among XDR isolates (17.3%) was O4 (34.1%), distantly followed by O11 (15.9%). Within serotypes, XDR phenotypes were more frequent for O12 (60.0%) and O4 (57.3%). The most frequent clone among the XDR isolates was ST175 (40.9%), followed by CC235 (10.7%), ST308 (5.2%) and CC111 (3.6%). Up to 81.6% of XDR ST175 isolates typed O4, whereas 18.4% were non-typeable. O4 genotype was detected in all sequenced (n=55) ST175 isolates. On the other hand, CC235 and ST308 were associated with O11, whereas CC111 was linked to serotype O12. CONCLUSIONS: O4 serotype is linked to the MDR/XDR profile of widespread ST175 (typically only susceptible to colistin, amikacin and the novel combinations ceftolozane/tazobactam and ceftazidime/avibactam) and therefore, after local validation, its detection in the microbiology laboratory might be useful for guiding semi-empirical antipseudomonal therapies and infection control measures in Spanish hospitals.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Antígenos O/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Cefalosporinas/farmacologia , Simulação por Computador , Infecção Hospitalar/microbiologia , Genótipo , Hospitais , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Infecções por Pseudomonas/microbiologia , Vigilância em Saúde Pública , Sorogrupo , Sorotipagem , Espanha , Tazobactam/farmacologia , Sequenciamento Completo do Genoma
11.
J Antimicrob Chemother ; 74(7): 1825-1835, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30989186

RESUMO

OBJECTIVES: To undertake a Spanish nationwide survey on Pseudomonas aeruginosa molecular epidemiology and antimicrobial resistance. METHODS: Up to 30 consecutive healthcare-associated P. aeruginosa isolates collected in 2017 from each of 51 hospitals were studied. MICs of 13 antipseudomonal agents were determined by broth microdilution. Horizontally acquired ß-lactamases were detected by phenotypic methods and PCR. Clonal epidemiology was evaluated through PFGE and MLST; at least one XDR isolate from each clone and hospital (n = 185) was sequenced. RESULTS: The most active antipseudomonals against the 1445 isolates studied were colistin and ceftolozane/tazobactam (both 94.6% susceptible, MIC50/90 = 1/2 mg/L) followed by ceftazidime/avibactam (94.2% susceptible, MIC50/90 = 2/8 mg/L). Up to 252 (17.3%) of the isolates were XDR. Carbapenemases/ESBLs were detected in 3.1% of the isolates, including VIM, IMP, GES, PER and OXA enzymes. The most frequent clone among the XDR isolates was ST175 (40.9%), followed by CC235 (10.7%), ST308 (5.2%) and CC111 (4.0%). Carbapenemase production varied geographically and involved diverse clones, including 16.5% of ST175 XDR isolates. Additionally, 56% of the sequenced XDR isolates showed horizontally acquired aminoglycoside-modifying enzymes, which correlated with tobramycin resistance. Two XDR isolates produced QnrVC1, but fluoroquinolone resistance was mostly caused by QRDR mutations. Beyond frequent mutations (>60%) in OprD and AmpC regulators, four isolates showed AmpC mutations associated with resistance to ceftolozane/tazobactam and ceftazidime/avibactam. CONCLUSIONS: ST175 is the most frequent XDR high-risk clone in Spanish hospitals, but this nationwide survey also indicates a complex scenario in which major differences in local epidemiology, including carbapenemase production, need to be acknowledged in order to guide antimicrobial therapy.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Genótipo , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/efeitos dos fármacos , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Eletroforese em Gel de Campo Pulsado , Hospitais , Humanos , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Filogenia , Reação em Cadeia da Polimerase , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Espanha/epidemiologia
12.
Front Microbiol ; 9: 685, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681898

RESUMO

One of the most striking features of Pseudomonas aeruginosa is its outstanding capacity for developing antimicrobial resistance to nearly all available antipseudomonal agents through the selection of chromosomal mutations, leading to the failure of the treatment of severe hospital-acquired or chronic infections. Recent whole-genome sequencing (WGS) data obtained from in vitro assays on the evolution of antibiotic resistance, in vivo monitoring of antimicrobial resistance development, analysis of sequential cystic fibrosis isolates, and characterization of widespread epidemic high-risk clones have provided new insights into the evolutionary dynamics and mechanisms of P. aeruginosa antibiotic resistance, thus motivating this review. Indeed, the analysis of the WGS mutational resistome has proven to be useful for understanding the evolutionary dynamics of classical resistance pathways and to describe new mechanisms for the majority of antipseudomonal classes, including ß-lactams, aminoglycosides, fluoroquinolones, or polymixins. Beyond addressing a relevant scientific question, the analysis of the P. aeruginosa mutational resistome is expected to be useful, together with the analysis of the horizontally-acquired resistance determinants, for establishing the antibiotic resistance genotype, which should correlate with the antibiotic resistance phenotype and as such, it should be useful for the design of therapeutic strategies and for monitoring the efficacy of administered antibiotic treatments. However, further experimental research and new bioinformatics tools are still needed to overcome the interpretation limitations imposed by the complex interactions (including those leading to collateral resistance or susceptibility) between the 100s of genes involved in the mutational resistome, as well as the frequent difficulties for differentiating relevant mutations from simple natural polymorphisms.

14.
Artigo em Inglês | MEDLINE | ID: mdl-28874376

RESUMO

This study assessed the molecular epidemiology, resistance mechanisms, and susceptibility profiles of a collection of 150 extensively drug-resistant (XDR) Pseudomonas aeruginosa clinical isolates obtained from a 2015 Spanish multicenter study, with a particular focus on resistome analysis in relation to ceftolozane-tazobactam susceptibility. Broth microdilution MICs revealed that nearly all (>95%) of the isolates were nonsusceptible to piperacillin-tazobactam, ceftazidime, cefepime, aztreonam, imipenem, meropenem, and ciprofloxacin. Most of them were also resistant to tobramycin (77%), whereas nonsusceptibility rates were lower for ceftolozane-tazobactam (31%), amikacin (7%), and colistin (2%). Pulsed-field gel electrophoresis-multilocus sequence typing (PFGE-MLST) analysis revealed that nearly all of the isolates belonged to previously described high-risk clones. Sequence type 175 (ST175) was detected in all 9 participating hospitals and accounted for 68% (n = 101) of the XDR isolates, distantly followed by ST244 (n = 16), ST253 (n = 12), ST235 (n = 8), and ST111 (n = 2), which were detected only in 1 to 2 hospitals. Through phenotypic and molecular methods, the presence of horizontally acquired carbapenemases was detected in 21% of the isolates, mostly VIM (17%) and GES enzymes (4%). At least two representative isolates from each clone and hospital (n = 44) were fully sequenced on an Illumina MiSeq. Classical mutational mechanisms, such as those leading to the overexpression of the ß-lactamase AmpC or efflux pumps, OprD inactivation, and/or quinolone resistance-determining regions (QRDR) mutations, were confirmed in most isolates and correlated well with the resistance phenotypes in the absence of horizontally acquired determinants. Ceftolozane-tazobactam resistance was not detected in carbapenemase-negative isolates, in agreement with sequencing data showing the absence of ampC mutations. The unique set of mutations responsible for the XDR phenotype of ST175 clone documented 7 years earlier were found to be conserved, denoting the long-term persistence of this specific XDR lineage in Spanish hospitals. Finally, other potentially relevant mutations were evidenced, including those in penicillin-binding protein 3 (PBP3), which is involved in ß-lactam (including ceftolozane-tazobactam) resistance, and FusA1, which is linked to aminoglycoside resistance.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Aminoglicosídeos/farmacologia , Proteínas de Bactérias/genética , Cefalosporinas/farmacologia , Fluoroquinolonas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Ácido Penicilânico/análogos & derivados , Ácido Penicilânico/farmacologia , Polimixinas/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Espanha/epidemiologia , Tazobactam , Resistência beta-Lactâmica/genética , beta-Lactamases/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-28674059

RESUMO

Resistance development to novel cephalosporin-ß-lactamase inhibitor combinations during ceftazidime treatment of a surgical infection by Pseudomonas aeruginosa was investigated. Both initial (97C2) and final (98G1) isolates belonged to the high-risk clone sequence type (ST) 235 and were resistant to carbapenems (oprD), fluoroquinolones (GyrA-T83I, ParC-S87L), and aminoglycosides (aacA7/aacA8/aadA6). 98G1 also showed resistance to ceftazidime, ceftazidime-avibactam, and ceftolozane-tazobactam. Sequencing identified blaOXA-2 in 97C2, but 98G1 contained a 3-bp insertion leading to the duplication of the key residue D149 (designated OXA-539). Evaluation of PAO1 transformants producing cloned OXA-2 or OXA-539 confirmed that D149 duplication was the cause of resistance. Active surveillance of the emergence of resistance to these new valuable agents is warranted.


Assuntos
Sequência de Aminoácidos/genética , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Cefalosporinas/farmacologia , Ácido Penicilânico/análogos & derivados , Pseudomonas aeruginosa/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Ceftazidima/uso terapêutico , Cefalosporinas/uso terapêutico , DNA Girase/genética , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Ácido Penicilânico/farmacologia , Porinas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Tazobactam
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA