Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genetica ; 139(2): 255-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21222018

RESUMO

Calreticulin and calnexin are Ca(2+)-binding chaperones localized in the endoplasmic reticulum of eukaryotes acting in glycoprotein folding quality control and Ca(2+) homeostasis. The evolutionary histories of calreticulin and calnexin gene families were inferred by comprehensive phylogenetic analyses using 18 completed genomes and ESTs covering the major green plants groups, from green algae to angiosperms. Calreticulin and calnexin possibly share a common origin, and both proteins are present along all green plants lineages. The calreticulin founder gene within green plants duplicated in early tracheophytes leading to two possible groups of orthologs with specialized functions, followed by lineage-specific gene duplications in spermatophytes. Calnexin founder gene in land plants was inherited from basal green algae during evolution in a very conservative copy number. A comprehensive classification in possible groups of orthologs and a catalog of calreticulin and calnexin genes from green plants are provided.


Assuntos
Calnexina/metabolismo , Calreticulina/metabolismo , Evolução Molecular , Viridiplantae/genética , Proteínas de Ligação ao Cálcio/metabolismo , Etiquetas de Sequências Expressas , Efeito Fundador , Dosagem de Genes , Duplicação Gênica , Genoma de Planta , Chaperonas Moleculares , Filogenia
2.
BMC Evol Biol ; 10: 341, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-21054875

RESUMO

BACKGROUND: The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta) and is the main hemicellulose in non-graminaceous angiosperms. RESULTS: In this work, we used a comparative genomic approach to obtain new insights into the evolution of the xyloglucan-related enzymatic machinery in green plants. Detailed phylogenetic analyses were done for enzymes involved in xyloglucan synthesis (xyloglucan transglycosylase/hydrolase, α-xylosidase, ß-galactosidase, ß-glucosidase and α-fucosidase) and mobilization/degradation (ß-(1→4)-glucan synthase, α-fucosyltransferases, ß-galactosyltransferases and α-xylosyl transferase) based on 12 fully sequenced genomes and expressed sequence tags from 29 species of green plants. Evidence from Chlorophyta and Streptophyta green algae indicated that part of the Embryophyta xyloglucan-related machinery evolved in an aquatic environment, before land colonization. Streptophyte algae have at least three enzymes of the xyloglucan machinery: xyloglucan transglycosylase/hydrolase, ß-(1→4)-glucan synthase from the cellulose synthase-like C family and α-xylosidase that is also present in chlorophytes. Interestingly, gymnosperm sequences orthologs to xyloglucan transglycosylase/hydrolases with exclusively hydrolytic activity were also detected, suggesting that such activity must have emerged within the last common ancestor of spermatophytes. There was a positive correlation between the numbers of founder genes within each gene family and the complexity of the plant cell wall. CONCLUSIONS: Our data support the idea that a primordial xyloglucan-like polymer emerged in streptophyte algae as a pre-adaptation that allowed plants to subsequently colonize terrestrial habitats. Our results also provide additional evidence that charophycean algae and land plants are sister groups.


Assuntos
Evolução Molecular , Glucanos/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Viridiplantae/metabolismo , Xilanos/metabolismo , Viridiplantae/enzimologia
3.
BMC Genomics ; 11: 605, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20977763

RESUMO

BACKGROUND: The genus Bothrops is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of Bothrops alternatus, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay. RESULTS: A cDNA library of 5,350 expressed sequence tags (ESTs) was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide) degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%), bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%), phospholipases A2 (5.6%), serine proteinases (1.9%) and C-type lectins (1.5%). Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A2 were essentially acidic; no basic PLA2 were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed. CONCLUSIONS: Bothrops alternatus venom gland contains the major toxin classes described for other Bothrops venoms based on trancriptomic and proteomic studies. The predominance of type PIII metalloproteinases agrees with the well-known hemorrhagic activity of this venom, whereas the lower content of serine proteases and C-type lectins could contribute to less marked coagulopathy following envenoming by this species. The lack of basic PLA2 agrees with the lower myotoxicity of this venom compared to other Bothrops species with these toxins. Together, these results contribute to our understanding of the physiopathology of envenoming by this species.


Assuntos
Estruturas Animais/metabolismo , Bothrops/anatomia & histologia , Bothrops/genética , Venenos de Crotalídeos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequência de Aminoácidos , Animais , Elementos de DNA Transponíveis/genética , Bases de Dados de Ácidos Nucleicos , Etiquetas de Sequências Expressas , Sequências Repetidas Invertidas/genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Proteínas/classificação , Proteínas/genética , Proteínas/metabolismo , Proteômica , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA